Suppr超能文献

Electron transport properties of PAl-based cluster complexes.

作者信息

Shen John, He Haiying, Sengupta Turbasu, Bista Dinesh, Reber Arthur C, Pandey Ravindra, Khanna Shiv N

机构信息

Department of Physics and Astronomy, Valparaiso University Valparaiso Indiana 46383 USA

Department of Physics, Virginia Commonwealth University Richmond Virginia 23284 USA

出版信息

Nanoscale Adv. 2021 Sep 13;3(24):6888-6896. doi: 10.1039/d1na00355k. eCollection 2021 Dec 7.

Abstract

The electronic transport properties of PAl-based cluster complexes are investigated by density functional theory (DFT) in combination with the non-equilibrium Green's function (NEGF) method. Joining two PAl clusters a germanium linker creates a stable semiconducting complex with a large HOMO-LUMO gap. Sequential attachment of an electron-donating ligand, -ethyl-2-pyrrolidone, to one of the two linked clusters results in the shifting of the electronic spectrum of the ligated cluster while the energy levels of the unligated cluster are mostly unchanged. Using this approach, one can eventually align the HOMO of the ligated cluster to the LUMO of the non-ligated cluster, thereby significantly reducing the HOMO-LUMO gap of the complex. As a result, the transport properties of the complex are highly dependent on the number of attached ligands. Although a single ligand is observed to generally decrease the current, the inclusion of two or more ligands shows a significant increase in the amount of current at most voltages. The resulting increase of the current can be attributed to two factors, first the reduction in the HOMO-LUMO gap due to ligand attachment which has moved the transmission orbitals into the bias window. Secondly, when two or more ligands are attached to the complex, the HOMOs become delocalized across the scattering region, and this significantly enhances the currents.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fb/9418132/aed3c7d03f46/d1na00355k-f1.jpg

相似文献

1
Electron transport properties of PAl-based cluster complexes.
Nanoscale Adv. 2021 Sep 13;3(24):6888-6896. doi: 10.1039/d1na00355k. eCollection 2021 Dec 7.
2
A ligand-induced homojunction between aluminum-based superatomic clusters.
Nanoscale. 2020 Jun 11;12(22):12046-12056. doi: 10.1039/d0nr02611e.
3
Phosphine-Ligated Gold Clusters with Core+ exo Geometries: Unique Properties and Interactions at the Ligand-Cluster Interface.
Acc Chem Res. 2018 Dec 18;51(12):3125-3133. doi: 10.1021/acs.accounts.8b00477. Epub 2018 Nov 14.
4
Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy.
Inorg Chem. 2022 Jan 10;61(1):439-455. doi: 10.1021/acs.inorgchem.1c03130. Epub 2021 Dec 16.
6
Proliferating miller indices of C fullerene device under DFT-NEGF regime.
J Mol Graph Model. 2017 Jan;71:184-191. doi: 10.1016/j.jmgm.2016.10.017. Epub 2016 Dec 1.
7
Radical attached aluminum nanoclusters: an alternative way of cluster stabilization.
Phys Chem Chem Phys. 2016 Aug 21;18(31):21746-59. doi: 10.1039/c6cp03601e. Epub 2016 Jul 20.
8
HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2'-bipyridine ligands.
Dalton Trans. 2015 Oct 21;44(39):17075-90. doi: 10.1039/c5dt01891a. Epub 2015 Sep 15.
9
Tuning the transport properties of a (C60)2 bridge with electron and hole dopings.
J Chem Phys. 2011 Jan 28;134(4):044708. doi: 10.1063/1.3548883.
10
Observing the Role of Electron Delocalization in Electronic Transport by Incorporating Actinides into Ligated Metal-Chalcogenide Superatoms.
Langmuir. 2024 Jul 23;40(29):15023-15030. doi: 10.1021/acs.langmuir.4c01345. Epub 2024 Jul 15.

本文引用的文献

1
Single-Electron Currents in Designer Single-Cluster Devices.
J Am Chem Soc. 2020 Sep 2;142(35):14924-14932. doi: 10.1021/jacs.0c04970. Epub 2020 Aug 18.
2
A ligand-induced homojunction between aluminum-based superatomic clusters.
Nanoscale. 2020 Jun 11;12(22):12046-12056. doi: 10.1039/d0nr02611e.
3
Superatomic molecules with internal electric fields for light harvesting.
Nanoscale. 2020 Feb 21;12(7):4736-4742. doi: 10.1039/c9nr09229c. Epub 2020 Feb 12.
5
Superatoms: Electronic and Geometric Effects on Reactivity.
Acc Chem Res. 2017 Feb 21;50(2):255-263. doi: 10.1021/acs.accounts.6b00464. Epub 2017 Feb 9.
6
Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens.
J Am Chem Soc. 2017 Feb 8;139(5):1871-1877. doi: 10.1021/jacs.6b09416. Epub 2017 Jan 26.
7
The chips are down for Moore's law.
Nature. 2016 Feb 11;530(7589):144-7. doi: 10.1038/530144a.
8
Systematic pseudopotentials from reference eigenvalue sets for DFT calculations: Pseudopotential files.
Data Brief. 2015 Jan 13;3:21-3. doi: 10.1016/j.dib.2014.12.005. eCollection 2015 Jun.
9
Hybridization effects on the out-of-plane electron tunneling properties of monolayers: is h-BN more conductive than graphene?
Nanotechnology. 2014 Aug 29;25(34):345703. doi: 10.1088/0957-4484/25/34/345703. Epub 2014 Aug 7.
10
A brief history of molecular electronics.
Nat Nanotechnol. 2013 Jun;8(6):378-81. doi: 10.1038/nnano.2013.110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验