Yin Zhenyao, Xu Yaping, Wu Jinggao, Huang Jing
State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University Chongqing 400715 PR China
Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China.
Nanoscale Adv. 2021 Feb 23;3(7):2007-2016. doi: 10.1039/d0na00778a. eCollection 2021 Apr 6.
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life, which could contribute to next-generation applications. Herein, we utilize pomelo seeds, a bio-waste from pomelo, in high-energy and high-power supercapacitors by a facile low-cost pyrolysis and activation method. The as-synthesized hierarchically porous carbon is surface-engineered with a large quantity of nitrogen and sulfur heteroatoms to give a high specific capacitance of ∼845 F g at 1 A g. An ultra-high stability of ∼93.8% even after 10 000 cycles (10 A g) is achieved at room temperature. Moreover, a maximum energy density of ∼85 W h kg at a power density of 1.2 kW kg could be achieved in 1.2 V aqueous symmetrical supercapacitors. The results provide new insights that will be of use in the development of high-performance, green supercapacitors for advanced energy storage systems.
源自绿色可持续材料的电化学超级电容器可展现出卓越的能量输出和超长的循环寿命,这有助于推动下一代应用的发展。在此,我们通过一种简便的低成本热解和活化方法,将柚子废弃物柚子籽用于高能量和高功率超级电容器中。所合成的具有分级多孔结构的碳材料通过大量氮和硫杂原子进行表面工程处理,在1 A g电流密度下具有约845 F g的高比电容。在室温下,即使经过10000次循环(10 A g),仍能实现约93.8%的超高稳定性。此外,在1.2 V水系对称超级电容器中,功率密度为1.2 kW kg时可实现约85 W h kg的最大能量密度。这些结果为开发用于先进储能系统的高性能绿色超级电容器提供了新的见解。