Liu Han, Zhang Fumin, Lin Xinyu, Wu Jinggao, Huang Jing
State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China.
Nanoscale Adv. 2023 Jan 10;5(3):786-795. doi: 10.1039/d2na00758d. eCollection 2023 Jan 31.
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of HPO and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g at 1 A g) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g) and an impressive energy density as large as ∼71 W h kg at a power density of 1.2 kW kg. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
由绿色可持续材料制成的电化学超级电容器,由于具有大的可及表面积和明显缩短的离子扩散路径,可展现出卓越的能量输出和超长的循环寿命。在此,我们通过磷酸(HPO)的简便水热活化和低成本热解,建立了一种从可持续的银杏叶前驱体制备多孔碳(GLAC)的有效策略。通过这种方式,具有分级多孔结构的GLAC在水性电解质(1 M KOH)中对高能量/功率超级电容器(在1 A g下约为709 F g)表现出非凡的适应性。值得注意的是,基于GLAC-2的超级电容器即使在10000次循环(10 A g)后仍显示出约98.24%的超高稳定性,并且在1.2 kW kg的功率密度下具有高达约71 W h kg的令人印象深刻的能量密度。这些结果提供了新的见解,即简便的合成方法与优异的性能相结合,为未来在电化学储能领域的应用带来了巨大潜力。