Tian Hua, Zhu Kaixin, Jiang Yang, Wang Lin, Li Wang, Yu Zhifeng, Wu Cunqi
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
The State Key Laboratory of Electroanalytic, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
Nanoscale Adv. 2021 Mar 31;3(10):2924-2933. doi: 10.1039/d1na00001b. eCollection 2021 May 18.
Graphene-based hybrid composites as positive electrodes have aroused great interest in the field of hybrid supercapacitors. However, the charge storage capability of hybrid composites suffers from the scarce interaction between their end members to some extent. Herein, a hybrid composite with electrostatic interaction was obtained by employing a heterogeneous assembly strategy of Ni-Co layered double hydroxide (LDH) and sulfonated graphene nanosheets (SGN). Depending on the substitution of the negatively charged SGN for the interlayer nitrate anions compensating for the positively charged LDH host slabs, the abundance of Ni on the surface of the hybrid composite could be increased to intensify the electrostatic interaction within hybrid composites. As expected, the effective coupling of LDH with SGN ensured the uniform incorporation of heterogeneous components. The unique structure of the hybrid composite accelerated electron transfer and ion diffusion processes during electrochemical reactions, which is beneficial to improve the electrochemical performance of battery-type electrodes. Further evaluation showed that the specific capacity of the LDH/SGN hybrid composite is 1177 C g (2354 F g) at 1 A g. Additionally, the LDH/SGN//AC hybrid supercapacitor achieved an energy density of 43 W h kg at 800 W kg and still retained 94% of its initial specific capacitance over 10 000 cycles. The boosting effect of the electrostatic interaction within the hybrid composite on electrochemical properties offers a novel pathway for the development of supercapacitors.
基于石墨烯的混合复合材料作为正极,在混合超级电容器领域引起了极大的关注。然而,混合复合材料的电荷存储能力在一定程度上受到其末端成员之间相互作用不足的影响。在此,通过采用镍钴层状双氢氧化物(LDH)和磺化石墨烯纳米片(SGN)的异质组装策略,获得了具有静电相互作用的混合复合材料。根据带负电荷的SGN取代层间硝酸根阴离子以补偿带正电荷的LDH主体板,混合复合材料表面的镍含量可以增加,以增强混合复合材料内部的静电相互作用。正如预期的那样,LDH与SGN的有效耦合确保了异质组分的均匀掺入。混合复合材料的独特结构加速了电化学反应过程中的电子转移和离子扩散过程,这有利于提高电池型电极的电化学性能。进一步评估表明,LDH/SGN混合复合材料在1 A g下的比容量为1177 C g(2354 F g)。此外,LDH/SGN//AC混合超级电容器在800 W kg下实现了43 W h kg的能量密度,并且在10000次循环后仍保留其初始比电容的94%。混合复合材料内部静电相互作用对电化学性能的增强作用为超级电容器的发展提供了一条新途径。