Karthik Kiran Sarigamala, Shukla Shobha, Struck Alexander, Saxena Sumit
Centre for Research in Nanotechnology and Science , Indian Institute of Technology Bombay , Mumbai 400076 , MH , India.
Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science , Indian Institute of Technology Bombay , Mumbai 400076 , MH , India.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):20232-20240. doi: 10.1021/acsami.8b21265. Epub 2019 May 24.
The discovery of graphene oxide (GO) has made a profound impact on varied areas of research due to its excellent physicochemical properties. However, surface engineering of these nanostructures holds the key to enhanced surface properties. Here, we introduce surface engineering of reduced GO (rGO) shells by radially grafting Ni-Co layered double hydroxide (LDH) lamella on rGO shells to form Ni-Co LDH@rGO. The morphology of synthesized Ni-Co LDH@rGO mimics dendritic cell-like three-dimensional (3D) hierarchical morphologies. Silica nanospheres form self-sacrificial templates during the reduction of GO shells to form rGO shells during the template-assisted synthesis. The radial growth of LDH lamellae during hydrothermal process on GO shells provides access to a significantly larger number of additional active redox sites and overcompensates the loss of pseudocapacitive charge storage centers during the reduction of GO to form rGO shells. This enables in the synthesis of novel surface-engineered rGO nanoshells, which provide large surface area, enhanced redox sites, high porosity, and easy transport of ions. These synthesized 3D dendritic cell-like morphologies of Ni-Co LDH@rGO show a high capacitance of ∼2640 F g. A flexible hybrid device fabricated using this nanomaterial shows a high energy density of ∼35 Wh kg and a power density of 750 W kg at 1 A g. No appreciable compromise in device performance is observed under bending conditions. This synthesis strategy may be used in the development of functional materials useful for potential applications, including sensors, catalysts, and energy storage.
氧化石墨烯(GO)的发现因其优异的物理化学性质,在各个研究领域产生了深远影响。然而,这些纳米结构的表面工程是增强其表面性质的关键所在。在此,我们通过在还原氧化石墨烯(rGO)壳层上径向接枝镍 - 钴层状双氢氧化物(LDH)薄片,来引入对rGO壳层的表面工程,从而形成镍 - 钴LDH@rGO。合成的镍 - 钴LDH@rGO的形态模仿树突状细胞样的三维(3D)分级形态。在模板辅助合成过程中,二氧化硅纳米球在GO壳层还原形成rGO壳层的过程中充当自牺牲模板。水热过程中LDH薄片在GO壳层上的径向生长提供了大量额外的活性氧化还原位点,并且在GO还原形成rGO壳层的过程中,充分补偿了赝电容电荷存储中心的损失。这使得能够合成新型的表面工程化rGO纳米壳,其具有大表面积、增强的氧化还原位点、高孔隙率以及离子的易传输性。这些合成的镍 - 钴LDH@rGO的3D树突状细胞样形态显示出约2640 F g的高电容。使用这种纳米材料制造的柔性混合器件在1 A g下显示出约35 Wh kg的高能量密度和750 W kg的功率密度。在弯曲条件下未观察到器件性能有明显下降。这种合成策略可用于开发对潜在应用有用的功能材料,包括传感器、催化剂和能量存储。