Su Nan, Zhu Daqiang, Zhang Pingfan, Fang Yuhai, Chen Yuxiang, Fang Zhen, Zhou Xiangtong, Li Chunmei, Dong Hongjun
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
Inorg Chem. 2022 Oct 3;61(39):15600-15606. doi: 10.1021/acs.inorgchem.2c02421. Epub 2022 Sep 22.
Micro/nanostructure control of heterostructures is still a challenge for achieving high efficiency and selectivity of photocatalytic CO conversion. In this work, a new three-dimensiona/two-dimensional (3D/2D) heterostructure is fabricated by encapsulating RuS nanospheres in the interlayer of mesoporous polymeric carbon nitride (PCN) nanosheets based on an in situ growth and polymerization strategy. The unique microstructure of the obtained 3D/2D RuS/PCN heterojunction can effectively improve the transfer and separation efficiency of photogenerated charge carriers, reduce the mass transfer resistance of CO toward active sites, and provide a confined reaction space, thus propelling the photocatalytic CO reduction to CO with high selectivity. The CO yield over the optimal 5%-RuS/PCN sample reaches 4.2 and 2.8 times as high as that of single PCN and RuS within 4 h, respectively. Furthermore, the plausible charge transfer mechanism and CO reduction path are revealed by time-dependent in situ Fourier transform infrared (FT-IR) spectra combined with photophysical, electrochemical, and photoelectrochemical techniques and density functional theory (DFT) calculations. This work develops the microstructural engineering design strategy of PCN-based heterojunctions for selective photocatalytic CO fuel conversion.
对于实现光催化CO转化的高效率和选择性而言,异质结构的微/纳米结构控制仍然是一项挑战。在这项工作中,基于原位生长和聚合策略,通过将RuS纳米球封装在介孔聚合氮化碳(PCN)纳米片的层间,制备了一种新型的三维/二维(3D/2D)异质结构。所获得的3D/2D RuS/PCN异质结独特的微观结构能够有效提高光生电荷载流子的转移和分离效率,降低CO向活性位点的传质阻力,并提供一个受限的反应空间,从而推动光催化CO高选择性还原为CO。在4小时内,最佳的5%-RuS/PCN样品的CO产率分别达到单一PCN和RuS的4.2倍和2.8倍。此外,通过时间分辨原位傅里叶变换红外(FT-IR)光谱结合光物理、电化学和光电化学技术以及密度泛函理论(DFT)计算,揭示了合理的电荷转移机制和CO还原路径。这项工作为选择性光催化CO燃料转化开发了基于PCN的异质结的微观结构工程设计策略。