Suppr超能文献

构建具有快速光电子转移和表面氧化还原动力学的Z型FeOOH/PCN用于高效太阳能驱动的CO还原

Engineering Z-Scheme FeOOH/PCN with Fast Photoelectron Transfer and Surface Redox Kinetics for Efficient Solar-Driven CO Reduction.

作者信息

Sun Shangcong, Peng Bo, Song Ye, Wang Ruoyu, Song Haitao, Lin Wei

机构信息

SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 15;15(10):12957-12966. doi: 10.1021/acsami.2c19906. Epub 2023 Mar 6.

Abstract

Solar-driven conversion of carbon dioxide (CO) without sacrificial agents offers an attractive alternative in sustainable energy research; nevertheless, it is often retarded by the sluggish water oxidation kinetics and severe charge recombination. To this end, a Z-scheme iron oxyhydroxide/polymeric carbon nitride (FeOOH/PCN) heterojunction, as identified by quasi X-ray photoelectron spectroscopy, is constructed. In this heterostructure, the two-dimensional FeOOH nanorod provides rich coordinatively unsaturated sites and highly oxidative photoinduced holes to boost the sluggish water decomposition kinetics. Meanwhile, PCN acts as a robust agent for CO reduction. Consequently, FeOOH/PCN achieves efficient CO photoreduction with a superior selectivity of CH (>85%), together with an apparent quantum efficiency of 2.4% at 420 nm that outperforms most two-step photosystems to date. This work offers an innovative strategy for the construction of photocatalytic systems toward solar fuel production.

摘要

在无牺牲剂的情况下,太阳能驱动的二氧化碳(CO₂)转化为可持续能源研究提供了一种有吸引力的替代方案;然而,它常常受到缓慢的水氧化动力学和严重的电荷复合的阻碍。为此,通过准X射线光电子能谱鉴定,构建了一种Z型羟基氧化铁/聚合氮化碳(FeOOH/PCN)异质结。在这种异质结构中,二维FeOOH纳米棒提供了丰富的配位不饱和位点和高氧化性的光生空穴,以促进缓慢的水分解动力学。同时,PCN作为一种强大的CO₂还原剂。因此,FeOOH/PCN实现了高效的CO₂光还原,对CH₄的选择性高达85%以上,并且在420 nm处的表观量子效率为2.4%,优于目前大多数两步光催化体系。这项工作为构建用于太阳能燃料生产的光催化体系提供了一种创新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验