Khan Ameer Tamoor, Cao Xinwei, Liao Bolin, Francis Adam
Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China.
School of Business, Jiangnan University, Wuxi 213031, China.
Biomimetics (Basel). 2022 Aug 29;7(3):124. doi: 10.3390/biomimetics7030124.
The recently emerging multi-portfolio selection problem lacks a proper framework to ensure that client privacy and database secrecy remain intact. Since privacy is of major concern these days, in this paper, we propose a variant of Beetle Antennae Search (BAS) known as Distributed Beetle Antennae Search (DBAS) to optimize multi-portfolio selection problems without violating the privacy of individual portfolios. DBAS is a swarm-based optimization algorithm that solely shares the gradients of portfolios among the swarm without sharing private data or portfolio stock information. DBAS is a hybrid framework, and it inherits the swarm-like nature of the Particle Swarm Optimization (PSO) algorithm with the BAS updating criteria. It ensures a robust and fast optimization of the multi-portfolio selection problem whilst keeping the privacy and secrecy of each portfolio intact. Since multi-portfolio selection problems are a recent direction for the field, no work has been done concerning the privacy of the database nor the privacy of stock information of individual portfolios. To test the robustness of DBAS, simulations were conducted consisting of categories of multi-portfolio problems, where in each category, portfolios were selected. To achieve this, 200 days worth of real-world stock data were utilized from 25 NASDAQ stock companies. The simulation results prove that DBAS not only ensures portfolio privacy but is also efficient and robust in selecting optimal portfolios.
最近出现的多投资组合选择问题缺乏一个适当的框架来确保客户隐私和数据库保密性不受侵犯。由于如今隐私是主要关注点,在本文中,我们提出了一种名为分布式甲虫触角搜索(DBAS)的甲虫触角搜索(BAS)变体,以优化多投资组合选择问题,同时不侵犯单个投资组合的隐私。DBAS是一种基于群体的优化算法,它仅在群体之间共享投资组合的梯度,而不共享私人数据或投资组合股票信息。DBAS是一个混合框架,它继承了粒子群优化(PSO)算法的群体性质以及BAS更新准则。它确保了多投资组合选择问题的稳健且快速的优化,同时保持每个投资组合的隐私和保密性。由于多投资组合选择问题是该领域最近的一个方向,尚未有关于数据库隐私或单个投资组合股票信息隐私的相关工作。为了测试DBAS的稳健性,进行了由多投资组合问题类别组成的模拟,其中在每个类别中选择了投资组合。为实现这一点,利用了来自25家纳斯达克上市公司的200天的真实世界股票数据。模拟结果证明,DBAS不仅确保了投资组合隐私,而且在选择最优投资组合方面也是高效且稳健的。