Suppr超能文献

作为肌萎缩侧索硬化症研究的一种工具。

as a Tool for Amyotrophic Lateral Sclerosis Research.

作者信息

Hegde Krupa N, Srivastava Ajay

机构信息

Gatton Academy of Mathematics and Sciences at Western Kentucky University, Bowling Green, KY 42101, USA.

Department of Cell Biology, Yale College, New Haven, CT 06520, USA.

出版信息

J Dev Biol. 2022 Aug 30;10(3):36. doi: 10.3390/jdb10030036.

Abstract

Reliable animal model systems are an integral part of biological research. Ever since Thomas Hunt Morgan won a Nobel Prize for genetic work done using the fruit fly () as a model organism, it has played a larger and more important role in genetic research. models have long been used to study neurodegenerative diseases and have aided in identifying key disease progression biological pathways. Due to the availability of a vast array of genetic manipulation tools, its relatively short lifespan, and its ability to produce many progenies, has provided the ability to conduct large-scale genetic screens to elucidate possible genetic and molecular interactions in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's Disease, and Amyotrophic Lateral Sclerosis (ALS). With regards to ALS, many of the gene mutations that have been discovered to be linked to the disease have been modeled in to provide a look into a detailed model of pathogenesis. The aim of this review is to summarize key and newer developments in ALS research that have utilized and to provide insight into the profound use of as a tool for modeling this disease.

摘要

可靠的动物模型系统是生物学研究不可或缺的一部分。自从托马斯·亨特·摩根因使用果蝇作为模式生物进行遗传学研究而获得诺贝尔奖以来,果蝇在遗传学研究中发挥了越来越重要的作用。果蝇模型长期以来一直用于研究神经退行性疾病,并有助于确定关键的疾病进展生物学途径。由于有大量的基因操作工具、相对较短的寿命以及产生许多后代的能力,果蝇使得开展大规模基因筛选成为可能,以阐明神经退行性疾病(如阿尔茨海默病、帕金森病、亨廷顿舞蹈症和肌萎缩侧索硬化症(ALS))中可能的基因和分子相互作用。关于ALS,许多已被发现与该疾病相关的基因突变已在果蝇中建立模型,以深入了解发病机制的详细模型。本综述的目的是总结利用果蝇进行ALS研究的关键和最新进展,并深入了解果蝇作为该疾病建模工具的深远用途。

相似文献

1
as a Tool for Amyotrophic Lateral Sclerosis Research.
J Dev Biol. 2022 Aug 30;10(3):36. doi: 10.3390/jdb10030036.
2
A fruitful endeavor: modeling ALS in the fruit fly.
Brain Res. 2015 May 14;1607:47-74. doi: 10.1016/j.brainres.2014.09.064. Epub 2014 Oct 5.
4
Modeling Neurodegenerative Disorders in .
Int J Mol Sci. 2020 Apr 26;21(9):3055. doi: 10.3390/ijms21093055.
5
Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism.
Brain Res. 2018 Aug 15;1693(Pt A):109-120. doi: 10.1016/j.brainres.2018.04.043. Epub 2018 May 9.
6
Amyotrophic Lateral Sclerosis Genes in .
Int J Mol Sci. 2021 Jan 18;22(2):904. doi: 10.3390/ijms22020904.
7
As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases.
Front Cell Neurosci. 2017 Mar 21;11:70. doi: 10.3389/fncel.2017.00070. eCollection 2017.
8
Drosophila melanogaster: a fly through its history and current use.
J R Coll Physicians Edinb. 2013;43(1):70-5. doi: 10.4997/JRCPE.2013.116.
9
Drosophila as an In Vivo Model for Human Neurodegenerative Disease.
Genetics. 2015 Oct;201(2):377-402. doi: 10.1534/genetics.115.179457.
10
as a model to study autophagy in neurodegenerative diseases induced by proteinopathies.
Front Neurosci. 2023 May 18;17:1082047. doi: 10.3389/fnins.2023.1082047. eCollection 2023.

引用本文的文献

1
Beyond Transgenic Mice: Emerging Models and Translational Strategies in Alzheimer's Disease.
Int J Mol Sci. 2025 Jun 10;26(12):5541. doi: 10.3390/ijms26125541.
2
Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances.
Int J Mol Sci. 2024 Sep 15;25(18):9966. doi: 10.3390/ijms25189966.

本文引用的文献

1
Chronic Exposure to Paraquat Induces Alpha-Synuclein Pathogenic Modifications in .
Int J Mol Sci. 2021 Oct 27;22(21):11613. doi: 10.3390/ijms222111613.
2
DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner.
Acta Neuropathol. 2021 Sep;142(3):515-536. doi: 10.1007/s00401-021-02333-z. Epub 2021 Jun 1.
3
Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway.
Nat Neurosci. 2021 Aug;24(8):1077-1088. doi: 10.1038/s41593-021-00859-9. Epub 2021 May 31.
4
NEK1 mutations and the risk of amyotrophic lateral sclerosis (ALS): a meta-analysis.
Neurol Sci. 2021 Apr;42(4):1277-1285. doi: 10.1007/s10072-020-05037-6. Epub 2021 Jan 18.
5
The Peripheral Immune System and Amyotrophic Lateral Sclerosis.
Front Neurol. 2020 Apr 21;11:279. doi: 10.3389/fneur.2020.00279. eCollection 2020.
6
Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo.
Neurobiol Dis. 2020 Jul;140:104837. doi: 10.1016/j.nbd.2020.104837. Epub 2020 Mar 19.
7
Genetic Dissection of Alzheimer's Disease Using Models.
Int J Mol Sci. 2020 Jan 30;21(3):884. doi: 10.3390/ijms21030884.
9
TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response.
PLoS Genet. 2019 May 17;15(5):e1007947. doi: 10.1371/journal.pgen.1007947. eCollection 2019 May.
10
Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis.
Front Mol Neurosci. 2019 Feb 14;12:25. doi: 10.3389/fnmol.2019.00025. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验