Suppr超能文献

调整具有相干晶格异质结结构的同轴 ZnO/ZnS/ZnIn S 纳米棒的载流子转移行为,用于光电化学水氧化。

Tuning the Carrier Transfer Behavior of Coaxial ZnO/ZnS/ZnIn S Nanorods with a Coherent Lattice Heterojunction Structure for Photoelectrochemical Water Oxidation.

机构信息

State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, 750021, Yinchuan, Ningxia, P. R. China.

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, Gansu, P. R. China.

出版信息

ChemSusChem. 2022 Dec 7;15(23):e202201469. doi: 10.1002/cssc.202201469. Epub 2022 Oct 13.

Abstract

Serious degradation and the short photogenerated carrier lifetime for the wide-bandgap semiconductor ZnO have become prominent issues that negatively affect photoelectrochemical (PEC) water splitting. Herein, a novel electron transport pathway was constructed by simple but effective coaxial growth of ZnO/ZnS/ZnIn S heterostructure nanoarrays to increase the carrier separation efficiency. This new photoanode fulfilled the requirements of both favorable band alignment and stability, achieving a stable photocurrent density of 1.146 mA cm at 1.2 V , which was approximately twice that of pristine ZnO. Detailed experimental studies revealed that the improved PEC activity was due to the lattice-matching interface coherency that activated the carrier transport pathway, giving rise to an optimized interfacial electronic structure for promoted charge separation by the built-in electric field and strengthened water oxidation activity. This design may provide a new approach to fabricating various efficient lattice-matching coherent interface photoanodes for PEC water splitting.

摘要

宽带隙半导体 ZnO 的严重退化和光生载流子寿命短已成为影响光电化学(PEC)水分解的突出问题。在此,通过简单但有效的同轴生长 ZnO/ZnS/ZnIn S 异质结构纳米阵列构建了一种新型的电子输运途径,以提高载流子分离效率。这种新型光阳极满足了良好的能带排列和稳定性的要求,在 1.2 V 时实现了稳定的光电流密度 1.146 mA cm,大约是原始 ZnO 的两倍。详细的实验研究表明,改善的 PEC 活性是由于晶格匹配界面相干性激活了载流子输运途径,导致优化的界面电子结构,通过内置电场促进电荷分离,并增强水氧化活性。这种设计可能为制备各种高效的晶格匹配相干界面光阳极用于 PEC 水分解提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验