School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518005, China.
Biosensors (Basel). 2022 Sep 19;12(9):766. doi: 10.3390/bios12090766.
Oocyte vitrification technology is widely used for assisted reproduction and fertility preservation, which requires precise washing sequences and timings of cryoprotectant agents (CPAs) treatment to relieve the osmotic shock to cells. The gold standard Cryotop method is extensively used in oocyte vitrification and is currently the most commonly used method in reproductive centers. However, the Cryotop method requires precise and complex manual manipulation by an embryologist, whose proficiency directly determines the effect of vitrification. Therefore, in this study, an automatic microfluidic system consisting of a novel open microfluidic chip and a set of automatic devices was established as a standardized operating protocol to facilitate the conventional manual Cryotop method and minimize the osmotic shock applied to the oocyte. The proposed open microfluidic system could smoothly change the CPA concentration around the oocyte during vitrification pretreatment, and transferred the treated oocyte to the Cryotop with a tiny droplet. The system better conformed to the operating habits of embryologists, whereas the integration of commercialized Cryotop facilitates the subsequent freezing and thawing processes. With standardized operating procedures, our system provides consistent treatment effects for each operation, leading to comparable survival rate, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) level of oocytes to the manual Cryotop operations. The vitrification platform is the first reported microfluidic system integrating the function of cells transfer from the processing chip, which avoids the risk of cell loss or damage in a manual operation and ensures the sufficient cooling rate during liquid nitrogen (LN2) freezing. Our study demonstrates significant potential of the automatic microfluidic approach to serve as a facile and universal solution for the vitrification of various precious cells.
卵母细胞玻璃化技术广泛应用于辅助生殖和生育保存,需要精确的洗涤序列和冷冻保护剂(CPAs)处理时间,以减轻细胞的渗透冲击。Cryotop 方法是卵母细胞玻璃化的金标准,广泛应用于卵母细胞玻璃化,目前是生殖中心最常用的方法。然而,Cryotop 方法需要胚胎学家进行精确而复杂的手动操作,其熟练程度直接决定了玻璃化的效果。因此,在这项研究中,建立了一个由新型开放式微流控芯片和一套自动设备组成的自动微流控系统,作为一个标准化操作方案,以促进常规的手动 Cryotop 方法,并最小化卵母细胞受到的渗透冲击。所提出的开放式微流控系统可以在玻璃化预处理过程中顺利改变卵母细胞周围的 CPAs 浓度,并将处理后的卵母细胞转移到 Cryotop 上的微小液滴中。该系统更好地符合胚胎学家的操作习惯,而商业化的 Cryotop 的集成则方便了后续的冷冻和解冻过程。有了标准化的操作程序,我们的系统为每个操作提供一致的处理效果,导致卵母细胞的存活率、线粒体膜电位(MMP)和活性氧(ROS)水平与手动 Cryotop 操作相当。该玻璃化平台是第一个报道的集成了从处理芯片转移细胞功能的微流控系统,避免了手动操作中细胞丢失或损坏的风险,并确保了在液氮(LN2)冷冻过程中有足够的冷却速率。我们的研究表明,自动微流控方法具有很大的潜力,可以作为一种简便通用的方法,用于各种珍贵细胞的玻璃化。