Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
Viruses. 2022 Sep 17;14(9):2065. doi: 10.3390/v14092065.
Seasonal H3N2 influenza evolves rapidly, leading to an extremely poor vaccine efficacy. Substitutions employed during vaccine production using embryonated eggs (i.e., egg passage adaptation) contribute to the poor vaccine efficacy (VE), but the evolutionary mechanism remains elusive. Using an unprecedented number of hemagglutinin sequences ( = 89,853), we found that the fitness landscape of passage adaptation is dominated by pervasive epistasis between two leading residues (186 and 194) and multiple other positions. Convergent evolutionary paths driven by strong epistasis explain most of the variation in VE, which has resulted in extremely poor vaccines for the past decade. Leveraging the unique fitness landscape, we developed a novel machine learning model that can predict egg passage substitutions for any candidate vaccine strain before the passage experiment, providing a unique opportunity for the selection of optimal vaccine viruses. Our study presents one of the most comprehensive characterizations of the fitness landscape of a virus and demonstrates that evolutionary trajectories can be harnessed for improved influenza vaccines.
季节性 H3N2 流感病毒进化迅速,导致疫苗效果极差。在使用鸡胚生产疫苗时进行的替换(即,疫苗生产中的鸡胚适应)导致了疫苗效果不佳(VE),但进化机制仍不清楚。使用前所未有的血凝素序列(= 89853),我们发现适应传递的适应度景观主要由两个主要残基(186 和 194)和多个其他位置之间广泛的上位性决定。由强上位性驱动的趋同进化路径解释了 VE 中大多数变异,这导致过去十年的疫苗效果极差。利用独特的适应度景观,我们开发了一种新的机器学习模型,可以在传递实验之前预测任何候选疫苗株的鸡胚传递替换,为选择最佳疫苗病毒提供了独特的机会。我们的研究展示了病毒适应度景观最全面的特征之一,并证明可以利用进化轨迹来改进流感疫苗。