Suppr超能文献

scWizard:一种基于网络的自动化工具,用于对癌症中的单细胞进行分类和注释以及对单细胞RNA测序数据进行下游分析。

scWizard: A web-based automated tool for classifying and annotating single cells and downstream analysis of single-cell RNA-seq data in cancers.

作者信息

Wei Jinfen, Xie Qingsong, Qu Yimo, Huang Guanda, Chen Zixi, Du Hongli

机构信息

School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

出版信息

Comput Struct Biotechnol J. 2022 Aug 27;20:4902-4909. doi: 10.1016/j.csbj.2022.08.028. eCollection 2022.

Abstract

The emerging number of single-cell RNA-seq (scRNA-Seq) datasets allows the characterization of cell types across various cancer types. However, there is still lack of effective tools to integrate the various analysis of single-cells, especially for making fine annotation on subtype cells within the tumor microenvironment (TME). We developed scWizard, a point-and-click tool packaging automated process including our developed cell annotation method based on deep neural network learning and 11 downstream analyses methods. scWizard used 113,976 cells across 13 cancer types as a built-in reference dataset for training the hierarchical model enabling to automatedly classify and annotate 7 major cell types and 47 cell subtypes in the TME. scWizard provides a built-in pre-training set for user's flexible choice, and gives a higher accuracy for annotation subtypes of tumor-derived -lymphocytes/natural killer cells (T/NK) and myeloid cells from different cancer types compared with the existing five methods. scWizard has good robustness in three independent cancer datasets, with an accuracy of 0.98 in annotating major cell types, 0.85 in annotating myeloid cell subtypes and 0.79 in annotating T/NK cell subtypes, indicting the wide applicability of scWizard in different cell types of cancers. Finally, the automatic analysis and visualization function of scWizard are presented by using the intrahepatic cholangiocarcinoma (ICC) scRNA-Seq dataset as a case. scWizard focuses on decoding TME and covers various analysis flows for cancer scRNA-Seq study, and provides an easy-to-use tool and a user-friendly interface for researchers widely, to further accelerate the biological discovery of cancer research.

摘要

单细胞RNA测序(scRNA-Seq)数据集数量的不断增加,使得人们能够对各种癌症类型中的细胞类型进行表征。然而,仍然缺乏有效的工具来整合单细胞的各种分析,特别是在肿瘤微环境(TME)中对亚型细胞进行精细注释。我们开发了scWizard,这是一个点击式工具,它打包了自动化流程,包括我们基于深度神经网络学习开发的细胞注释方法和11种下游分析方法。scWizard使用了13种癌症类型的113,976个细胞作为内置参考数据集,用于训练层次模型,从而能够自动分类和注释TME中的7种主要细胞类型和47种细胞亚型。scWizard提供了一个内置的预训练集供用户灵活选择,与现有的五种方法相比,在注释来自不同癌症类型的肿瘤衍生淋巴细胞/自然杀伤细胞(T/NK)和髓样细胞的亚型时具有更高的准确性。scWizard在三个独立的癌症数据集中具有良好的稳健性,注释主要细胞类型的准确率为0.98,注释髓样细胞亚型的准确率为0.85,注释T/NK细胞亚型的准确率为0.79,表明scWizard在不同癌症细胞类型中具有广泛的适用性。最后,以肝内胆管癌(ICC)scRNA-Seq数据集为例,展示了scWizard的自动分析和可视化功能。scWizard专注于解码TME,涵盖了癌症scRNA-Seq研究的各种分析流程,并为研究人员广泛提供了一个易于使用的工具和用户友好的界面,以进一步加速癌症研究的生物学发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c5e/9474308/b53294ab8cb3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验