Suppr超能文献

基于 GAN 的数据增强的优化自动化心脏磁共振瘢痕量化。

Optimized automated cardiac MR scar quantification with GAN-based data augmentation.

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

Comput Methods Programs Biomed. 2022 Nov;226:107116. doi: 10.1016/j.cmpb.2022.107116. Epub 2022 Sep 7.

Abstract

BACKGROUND

The clinical utility of late gadolinium enhancement (LGE) cardiac MRI is limited by the lack of standardization, and time-consuming postprocessing. In this work, we tested the hypothesis that a cascaded deep learning pipeline trained with augmentation by synthetically generated data would improve model accuracy and robustness for automated scar quantification.

METHODS

A cascaded pipeline consisting of three consecutive neural networks is proposed, starting with a bounding box regression network to identify a region of interest around the left ventricular (LV) myocardium. Two further nnU-Net models are then used to segment the myocardium and, if present, scar. The models were trained on the data from the EMIDEC challenge, supplemented with an extensive synthetic dataset generated with a conditional GAN.

RESULTS

The cascaded pipeline significantly outperformed a single nnU-Net directly segmenting both the myocardium (mean Dice similarity coefficient (DSC) (standard deviation (SD)): 0.84 (0.09) vs 0.63 (0.20), p < 0.01) and scar (DSC: 0.72 (0.34) vs 0.46 (0.39), p < 0.01) on a per-slice level. The inclusion of the synthetic data as data augmentation during training improved the scar segmentation DSC by 0.06 (p < 0.01). The mean DSC per-subject on the challenge test set, for the cascaded pipeline augmented by synthetic generated data, was 0.86 (0.03) and 0.67 (0.29) for myocardium and scar, respectively.

CONCLUSION

A cascaded deep learning-based pipeline trained with augmentation by synthetically generated data leads to myocardium and scar segmentations that are similar to the manual operator, and outperforms direct segmentation without the synthetic images.

摘要

背景

由于缺乏标准化和耗时的后处理,晚期钆增强(LGE)心脏 MRI 的临床实用性受到限制。在这项工作中,我们测试了一个假设,即使用合成数据增强训练的级联深度学习管道将提高自动瘢痕量化模型的准确性和鲁棒性。

方法

提出了一种由三个连续神经网络组成的级联管道,首先是一个边界框回归网络,用于识别左心室(LV)心肌周围的感兴趣区域。然后使用两个进一步的 nnU-Net 模型来分割心肌,如果存在,则分割瘢痕。模型是在 EMIDEC 挑战赛的数据上进行训练的,并辅以使用条件生成对抗网络生成的广泛的合成数据集。

结果

级联管道在逐片层面上明显优于直接分割心肌(平均 Dice 相似系数(DSC)(标准差(SD)):0.84(0.09)比 0.63(0.20),p<0.01)和瘢痕(DSC:0.72(0.34)比 0.46(0.39),p<0.01)的单个 nnU-Net。在训练期间,将合成数据作为数据增强包括在内,可将瘢痕分割 DSC 提高 0.06(p<0.01)。在挑战赛测试集上,使用合成生成的数据增强级联管道的平均每个受试者的 DSC 分别为 0.86(0.03)和 0.67(0.29),用于心肌和瘢痕。

结论

用合成数据增强训练的级联深度学习管道可实现与手动操作者相似的心肌和瘢痕分割,并优于没有合成图像的直接分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验