Suppr超能文献

基于无监督域自适应的自动心血管磁共振心肌瘢痕量化。

Automated cardiovascular MR myocardial scar quantification with unsupervised domain adaptation.

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

Eur Radiol Exp. 2024 Aug 14;8(1):93. doi: 10.1186/s41747-024-00497-3.

Abstract

Quantification of myocardial scar from late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) images can be facilitated by automated artificial intelligence (AI)-based analysis. However, AI models are susceptible to domain shifts in which the model performance is degraded when applied to data with different characteristics than the original training data. In this study, CycleGAN models were trained to translate local hospital data to the appearance of a public LGE CMR dataset. After domain adaptation, an AI scar quantification pipeline including myocardium segmentation, scar segmentation, and computation of scar burden, previously developed on the public dataset, was evaluated on an external test set including 44 patients clinically assessed for ischemic scar. The mean ± standard deviation Dice similarity coefficients between the manual and AI-predicted segmentations in all patients were similar to those previously reported: 0.76 ± 0.05 for myocardium and 0.75 ± 0.32 for scar, 0.41 ± 0.12 for scar in scans with pathological findings. Bland-Altman analysis showed a mean bias in scar burden percentage of -0.62% with limits of agreement from -8.4% to 7.17%. These results show the feasibility of deploying AI models, trained with public data, for LGE CMR quantification on local clinical data using unsupervised CycleGAN-based domain adaptation. RELEVANCE STATEMENT: Our study demonstrated the possibility of using AI models trained from public databases to be applied to patient data acquired at a specific institution with different acquisition settings, without additional manual labor to obtain further training labels.

摘要

基于人工智能(AI)的自动分析可以方便地对晚期钆增强(LGE)心血管磁共振(CMR)图像中的心肌瘢痕进行量化。然而,AI 模型容易受到领域转移的影响,即在应用于与原始训练数据具有不同特征的数据时,模型性能会降低。在这项研究中,训练了 CycleGAN 模型,以将本地医院的数据转换为公共 LGE CMR 数据集的外观。在进行了域自适应后,评估了一个 AI 瘢痕量化管道,该管道包括心肌分割、瘢痕分割和瘢痕负担计算,该管道是基于公共数据集开发的,应用于一个包括 44 名临床评估为缺血性瘢痕的患者的外部测试集。在所有患者中,手动和 AI 预测分割之间的平均 Dice 相似系数 ± 标准偏差与之前报道的相似:心肌为 0.76 ± 0.05,瘢痕为 0.75 ± 0.32,病理发现的扫描中瘢痕为 0.41 ± 0.12。Bland-Altman 分析显示瘢痕负担百分比的平均偏差为-0.62%,一致性界限为-8.4%至 7.17%。这些结果表明,使用基于无监督 CycleGAN 的域自适应技术,可以将使用公共数据训练的 AI 模型部署到本地临床数据上,以进行 LGE CMR 量化。

相关声明:本研究表明,可以使用从公共数据库中训练的 AI 模型,将其应用于特定机构获取的具有不同采集设置的患者数据,而无需额外的人工劳动来获取进一步的训练标签。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d295/11324636/18d21e537ef7/41747_2024_497_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验