Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States.
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States.
Biomacromolecules. 2022 Oct 10;23(10):4130-4140. doi: 10.1021/acs.biomac.2c00544. Epub 2022 Sep 23.
Constructing protein-network materials that exhibit physicochemical and mechanical properties of individual protein constituents requires molecular cross-linkers with specificity and stability. A well-known example involves specific chemical fusion of a four-arm polyethylene glycol (tetra-PEG) to desired proteins with secondary cross-linkers. However, it is necessary to investigate tetra-PEG-like biomolecular cross-linkers that are genetically fused to the proteins, simplifying synthesis by removing additional conjugation and purification steps. Non-covalently, self-associating, streptavidin homotetramer is a viable, biomolecular alternative to tetra-PEG. Here, a multi-arm streptavidin design is characterized as a protein-network material platform using various secondary, biomolecular cross-linkers, such as high-affinity physical (i.e., non-covalent), transient physical, spontaneous chemical (i.e., covalent), or stimuli-induced chemical cross-linkers. Stimuli-induced, chemical cross-linkers fused to multi-arm streptavidin nanohubs provide sufficient diffusion prior to initiating permanent covalent bonds, allowing proper characterization of streptavidin nanohubs. Surprisingly, non-covalently associated streptavidin nanohubs exhibit extreme stability, which translates into material properties that resemble hydrogels formed by chemical bonds even at high temperatures. Therefore, this study not only establishes that the streptavidin nanohub is an ideal multi-arm biopolymer precursor but also provides valuable guidance for designing self-assembling nanostructured molecular networks that can properly harness the extraordinary properties of protein-based building blocks.
构建具有单个蛋白质组成部分的物理化学和机械性能的蛋白质网络材料需要具有特异性和稳定性的分子交联剂。一个众所周知的例子是通过将四臂聚乙二醇(四聚乙二醇)与具有二级交联剂的所需蛋白质进行特异性化学融合。然而,有必要研究与蛋白质基因融合的类似四聚乙二醇的生物分子交联剂,通过去除额外的缀合和纯化步骤简化合成。非共价的、自缔合的链霉亲和素四聚体是四聚乙二醇的可行生物分子替代物。在这里,使用各种二级生物分子交联剂(例如高亲和力物理(即非共价)、瞬态物理、自发化学(即共价)或刺激诱导化学交联剂),将多臂链霉亲和素设计为蛋白质网络材料平台进行了表征。刺激诱导的、与多臂链霉亲和素纳米中心融合的化学交联剂在形成永久共价键之前提供了足够的扩散,从而允许对链霉亲和素纳米中心进行适当的表征。令人惊讶的是,非共价结合的链霉亲和素纳米中心表现出极高的稳定性,这转化为材料特性,即使在高温下,也类似于由化学键形成的水凝胶。因此,这项研究不仅确立了链霉亲和素纳米中心是一种理想的多臂生物聚合物前体,而且为设计自组装纳米结构分子网络提供了有价值的指导,这些网络可以充分利用基于蛋白质的构建块的非凡特性。