Suppr超能文献

非共价结合链霉亲和素多臂纳米中心在交联蛋白质网络材料中表现出机械和热稳定性。

Non-Covalently Associated Streptavidin Multi-Arm Nanohubs Exhibit Mechanical and Thermal Stability in Cross-Linked Protein-Network Materials.

机构信息

Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States.

Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States.

出版信息

Biomacromolecules. 2022 Oct 10;23(10):4130-4140. doi: 10.1021/acs.biomac.2c00544. Epub 2022 Sep 23.

Abstract

Constructing protein-network materials that exhibit physicochemical and mechanical properties of individual protein constituents requires molecular cross-linkers with specificity and stability. A well-known example involves specific chemical fusion of a four-arm polyethylene glycol (tetra-PEG) to desired proteins with secondary cross-linkers. However, it is necessary to investigate tetra-PEG-like biomolecular cross-linkers that are genetically fused to the proteins, simplifying synthesis by removing additional conjugation and purification steps. Non-covalently, self-associating, streptavidin homotetramer is a viable, biomolecular alternative to tetra-PEG. Here, a multi-arm streptavidin design is characterized as a protein-network material platform using various secondary, biomolecular cross-linkers, such as high-affinity physical (i.e., non-covalent), transient physical, spontaneous chemical (i.e., covalent), or stimuli-induced chemical cross-linkers. Stimuli-induced, chemical cross-linkers fused to multi-arm streptavidin nanohubs provide sufficient diffusion prior to initiating permanent covalent bonds, allowing proper characterization of streptavidin nanohubs. Surprisingly, non-covalently associated streptavidin nanohubs exhibit extreme stability, which translates into material properties that resemble hydrogels formed by chemical bonds even at high temperatures. Therefore, this study not only establishes that the streptavidin nanohub is an ideal multi-arm biopolymer precursor but also provides valuable guidance for designing self-assembling nanostructured molecular networks that can properly harness the extraordinary properties of protein-based building blocks.

摘要

构建具有单个蛋白质组成部分的物理化学和机械性能的蛋白质网络材料需要具有特异性和稳定性的分子交联剂。一个众所周知的例子是通过将四臂聚乙二醇(四聚乙二醇)与具有二级交联剂的所需蛋白质进行特异性化学融合。然而,有必要研究与蛋白质基因融合的类似四聚乙二醇的生物分子交联剂,通过去除额外的缀合和纯化步骤简化合成。非共价的、自缔合的链霉亲和素四聚体是四聚乙二醇的可行生物分子替代物。在这里,使用各种二级生物分子交联剂(例如高亲和力物理(即非共价)、瞬态物理、自发化学(即共价)或刺激诱导化学交联剂),将多臂链霉亲和素设计为蛋白质网络材料平台进行了表征。刺激诱导的、与多臂链霉亲和素纳米中心融合的化学交联剂在形成永久共价键之前提供了足够的扩散,从而允许对链霉亲和素纳米中心进行适当的表征。令人惊讶的是,非共价结合的链霉亲和素纳米中心表现出极高的稳定性,这转化为材料特性,即使在高温下,也类似于由化学键形成的水凝胶。因此,这项研究不仅确立了链霉亲和素纳米中心是一种理想的多臂生物聚合物前体,而且为设计自组装纳米结构分子网络提供了有价值的指导,这些网络可以充分利用基于蛋白质的构建块的非凡特性。

相似文献

1
Non-Covalently Associated Streptavidin Multi-Arm Nanohubs Exhibit Mechanical and Thermal Stability in Cross-Linked Protein-Network Materials.
Biomacromolecules. 2022 Oct 10;23(10):4130-4140. doi: 10.1021/acs.biomac.2c00544. Epub 2022 Sep 23.
2
Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.
Biomacromolecules. 2015 Sep 14;16(9):2840-51. doi: 10.1021/acs.biomac.5b00802. Epub 2015 Aug 13.
3
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Ultrasound-Mediated Self-Healing Hydrogels Based on Tunable Metal-Organic Bonding.
Biomacromolecules. 2017 Apr 10;18(4):1162-1171. doi: 10.1021/acs.biomac.6b01841. Epub 2017 Mar 9.
7
A photodimerization approach to crosslink and functionalize microgels.
Colloids Surf B Biointerfaces. 2007 Aug 1;58(2):116-20. doi: 10.1016/j.colsurfb.2007.02.016. Epub 2007 Feb 25.
8
Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels.
Bioconjug Chem. 2017 Mar 15;28(3):751-759. doi: 10.1021/acs.bioconjchem.6b00593. Epub 2016 Dec 1.
10
Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
Biomacromolecules. 2012 Jul 9;13(7):2003-12. doi: 10.1021/bm300752j. Epub 2012 Jun 22.

本文引用的文献

1
Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2110961118.
2
Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4293-4304. doi: 10.1021/acsbiomaterials.0c01723. Epub 2021 Jun 20.
3
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
4
Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity.
Macromolecules. 2020 May 12;53(9):3464-3471. doi: 10.1021/acs.macromol.0c00514. Epub 2020 Apr 29.
5
Non-cytotoxic Dityrosine Photocrosslinked Polymeric Materials With Targeted Elastic Moduli.
Front Chem. 2020 Mar 13;8:173. doi: 10.3389/fchem.2020.00173. eCollection 2020.
7
Biopolymer nanofibrils: structure, modeling, preparation, and applications.
Prog Polym Sci. 2018 Oct;85:1-56. doi: 10.1016/j.progpolymsci.2018.06.004. Epub 2018 Jun 23.
8
Bio-Integrated Wearable Systems: A Comprehensive Review.
Chem Rev. 2019 Apr 24;119(8):5461-5533. doi: 10.1021/acs.chemrev.8b00573. Epub 2019 Jan 28.
9
Mechanisms of Diffusion in Associative Polymer Networks: Evidence for Chain Hopping.
J Am Chem Soc. 2018 Oct 31;140(43):14185-14194. doi: 10.1021/jacs.8b07908. Epub 2018 Oct 22.
10
Rationally designed synthetic protein hydrogels with predictable mechanical properties.
Nat Commun. 2018 Feb 12;9(1):620. doi: 10.1038/s41467-018-02917-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验