Department of Medical Administration, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
Surg Infect (Larchmt). 2022 Oct;23(8):754-762. doi: 10.1089/sur.2022.166. Epub 2022 Sep 23.
Predictive models are necessary to target high-risk populations and provide precision interventions for patients with lung neoplasm who suffer from surgical site infections (SSI). This case control study included patients with lung neoplasm who underwent minimally invasive surgeries (MIS). Logistic regression was used to generate the prediction model of SSI, and a nomogram was created. A receiver operator characteristic (ROC) curve was used to examine the predictive value of the model. A total of 151 patients with SSI were included, and 604 patients were randomly selected among the patients without SSI (ratio 4:1). Male gender (odds ratio [OR], 2.55; 95% confidence interval [CI], 1.57-4.15; p < 0.001), age >60 years (OR, 2.10; 95% CI, 1.29-3.44, p = 0.003), operation time >60 minutes (all categories, p < 0.05), treatments for diabetes mellitus (OR, 2.96; 95% CI, 1.75-4.98l; p < 0.001), and best forced expiratory volume in 1 second (FEV)/forced vital capacity (FVC; OR, 0.96; 95% CI, 0.94-0.99; p = 0.008) were independently associated with SSI. The model based on these variables showed an area under the curve (AUC) of 0.813 for predicting SSI. A nomogram predictive model was successfully established for predicting SSI in patients receiving MIS, with good predictive value.
预测模型对于目标高危人群和为患有手术部位感染(SSI)的肺部肿瘤患者提供精准干预措施是必要的。本病例对照研究纳入了接受微创手术(MIS)的肺部肿瘤患者。采用逻辑回归生成 SSI 的预测模型,并创建了一个列线图。使用受试者工作特征(ROC)曲线来评估模型的预测价值。共纳入 151 例 SSI 患者,在无 SSI 的患者中随机选择 604 例(比例为 4:1)。男性(比值比 [OR],2.55;95%置信区间 [CI],1.57-4.15;p<0.001)、年龄>60 岁(OR,2.10;95%CI,1.29-3.44,p=0.003)、手术时间>60 分钟(所有类别,p<0.05)、糖尿病治疗(OR,2.96;95%CI,1.75-4.98;p<0.001)和最佳用力呼气量(FEV)/用力肺活量(FVC)(OR,0.96;95%CI,0.94-0.99;p=0.008)与 SSI 独立相关。基于这些变量的模型预测 SSI 的曲线下面积(AUC)为 0.813。成功建立了预测 MIS 术后患者 SSI 的列线图预测模型,具有良好的预测价值。