Suppr超能文献

接受清洁骨科手术患者的手术部位感染预测列线图:一项回顾性研究。

A predictive nomogram for surgical site infection in patients who received clean orthopedic surgery: a retrospective study.

机构信息

Department of Infection Management, North China Healthcare Group Xingtai General Hospital, Xingtai, Hebei, China.

Operating Room, Xingtai General Hospital of North China Medical and Health Group, Xingtai, Hebei, China.

出版信息

J Orthop Surg Res. 2024 Jan 5;19(1):38. doi: 10.1186/s13018-023-04473-2.

Abstract

BACKGROUND

Surgical site infection (SSI) is a common and serious complication of elective clean orthopedic surgery that can lead to severe adverse outcomes. However, the prognostic efficacy of the current staging systems remains uncertain for patients undergoing elective aseptic orthopedic procedures. This study aimed to identify high-risk factors independently associated with SSI and develop a nomogram prediction model to accurately predict the occurrence of SSI.

METHODS

A total of 20,960 patients underwent elective clean orthopedic surgery in our hospital between January 2020 and December 2021, of whom 39 developed SSI; we selected all 39 patients with a postoperative diagnosis of SSI and 305 patients who did not develop postoperative SSI for the final analysis. The patients were randomly divided into training and validation cohorts in a 7:3 ratio. Univariate and multivariate logistic regression analyses were conducted in the training cohort to screen for independent risk factors of SSI, and a nomogram prediction model was developed. The predictive performance of the nomogram was compared with that of the National Nosocomial Infections Surveillance (NNIS) system. Decision curve analysis (DCA) was used to assess the clinical decision-making value of the nomogram.

RESULTS

The SSI incidence was 0.186%. Univariate and multivariate logistic regression analysis identified the American Society of Anesthesiology (ASA) class (odds ratio [OR] 1.564 [95% confidence interval (CI) 1.029-5.99, P = 0.046]), operative time (OR 1.003 [95% CI 1.006-1.019, P < 0.001]), and D-dimer level (OR 1.055 [95% CI 1.022-1.29, P = 0.046]) as risk factors for postoperative SSI. We constructed a nomogram prediction model based on these independent risk factors. In the training and validation cohorts, our predictive model had concordance indices (C-indices) of 0.777 (95% CI 0.672-0.882) and 0.732 (95% CI 0.603-0.861), respectively, both of which were superior to the C-indices of the NNIS system (0.668 and 0.543, respectively). Calibration curves and DCA confirmed that our nomogram model had good consistency and clinical predictive value, respectively.

CONCLUSIONS

Operative time, ASA class, and D-dimer levels are important clinical predictive indicators of postoperative SSI in patients undergoing elective clean orthopedic surgery. The nomogram predictive model based on the three clinical features demonstrated strong predictive performance, calibration capabilities, and clinical decision-making abilities for SSI.

摘要

背景

手术部位感染(SSI)是择期清洁骨科手术的一种常见且严重的并发症,可导致严重的不良后果。然而,目前的分期系统对于接受择期无菌骨科手术的患者的预后疗效仍然不确定。本研究旨在确定与 SSI 独立相关的高危因素,并建立列线图预测模型以准确预测 SSI 的发生。

方法

2020 年 1 月至 2021 年 12 月期间,共有 20960 例患者在我院接受择期清洁骨科手术,其中 39 例发生 SSI;我们选择了所有 39 例术后诊断为 SSI 的患者和 305 例未发生术后 SSI 的患者进行最终分析。患者按 7:3 的比例随机分为训练和验证队列。在训练队列中进行单因素和多因素逻辑回归分析,筛选 SSI 的独立危险因素,并建立列线图预测模型。比较列线图与国家医院感染监测(NNIS)系统的预测性能。决策曲线分析(DCA)用于评估列线图的临床决策价值。

结果

SSI 发生率为 0.186%。单因素和多因素逻辑回归分析确定美国麻醉医师协会(ASA)分级(比值比[OR]1.564[95%置信区间(CI)1.029-5.99,P=0.046])、手术时间(OR 1.003[95%CI 1.006-1.019,P<0.001])和 D-二聚体水平(OR 1.055[95%CI 1.022-1.29,P=0.046])是术后 SSI 的危险因素。我们基于这些独立危险因素建立了列线图预测模型。在训练和验证队列中,我们的预测模型的一致性指数(C 指数)分别为 0.777(95%CI 0.672-0.882)和 0.732(95%CI 0.603-0.861),均优于 NNIS 系统的 C 指数(分别为 0.668 和 0.543)。校准曲线和 DCA 证实,我们的列线图模型具有良好的一致性和临床预测价值。

结论

手术时间、ASA 分级和 D-二聚体水平是择期清洁骨科手术患者术后 SSI 的重要临床预测指标。基于这三个临床特征的列线图预测模型表现出强大的预测性能、校准能力和临床决策能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9dc/10770936/75d9c33d2005/13018_2023_4473_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验