Guo Donglei, Yang Mengke, Xu Shu, Zhu Shuping, Liu Guilong, Wu Naiteng, Cao Ang, Mi Hongyu, Liu Xianming
Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China.
Nanoscale. 2022 Oct 13;14(39):14575-14584. doi: 10.1039/d2nr03832c.
Regulating the electronic structure plays a positive role in improving the ion/electron kinetics of electrode materials for lithium ion batteries (LIBs). Herein, an effective approach is demonstrated to achieve Ni/MoC hybrid nanoparticles embedded in porous nitrogen-doped carbon nanofibers (Ni/MoC/NC). Density functional theory calculations indicate that Ni can activate the interface of Ni/MoC by regulating the electronic structure, and accordingly improve the electron/Li-ion diffusion kinetics. The charge at the interface transfers from Ni atoms to Mo atoms on the surface of MoC, illustrating the formation of an interfacial electric field in Ni/MoC. The formed interfacial electric field in Ni/MoC can improve the intrinsic electronic conductivity, and reduce the Li adsorption energy and the Li diffusion barrier. Thus, the obtained Ni/MoC/NC shows an excellent high-rate capability of 344.1 mA h g at 10 A g, and also displays a superior cyclic performance (remaining at 412.7 mA h g after 1800 cycles at 2 A g). This work demonstrates the important role of electronic structure regulation by assembling hybrid materials and provides new guidance for future work on designing novel electrode materials for LIBs.
调控电子结构对改善锂离子电池(LIBs)电极材料的离子/电子动力学具有积极作用。在此,展示了一种有效的方法来制备嵌入多孔氮掺杂碳纳米纤维(Ni/MoC/NC)中的Ni/MoC杂化纳米颗粒。密度泛函理论计算表明,Ni可通过调控电子结构激活Ni/MoC的界面,从而改善电子/锂离子扩散动力学。界面处的电荷从Ni原子转移至MoC表面的Mo原子,这表明在Ni/MoC中形成了界面电场。Ni/MoC中形成的界面电场可提高本征电子电导率,降低Li吸附能和Li扩散势垒。因此,所制备的Ni/MoC/NC在10 A g下具有344.1 mA h g的优异高倍率性能,并且在2 A g下循环1800次后仍保持412.7 mA h g的优异循环性能。这项工作证明了通过组装杂化材料调控电子结构的重要作用,并为未来设计LIBs新型电极材料的工作提供了新的指导。