Suppr超能文献

相似文献

1
Influence of voids on the thermal and light stability of perovskite solar cells.
Sci Adv. 2022 Sep 23;8(38):eabo5977. doi: 10.1126/sciadv.abo5977.
2
Eliminating Voids and Residual PbI beneath a Perovskite Film via Buried Interface Modification for Efficient Solar Cells.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28560-28569. doi: 10.1021/acsami.4c03969. Epub 2024 May 20.
3
Bridging the Buried Interface with Piperazine Dihydriodide Layer for High Performance Inverted Solar Cells.
Small. 2023 Jul;19(29):e2208260. doi: 10.1002/smll.202208260. Epub 2023 Apr 8.
5
Improvement of perovskite crystallinity by omnidirectional heat transfer radiative thermal annealing.
RSC Adv. 2019 May 14;9(26):14868-14875. doi: 10.1039/c9ra01309a. eCollection 2019 May 9.
10
Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells.
J Am Chem Soc. 2020 Feb 26;142(8):3989-3996. doi: 10.1021/jacs.9b13418. Epub 2020 Feb 17.

引用本文的文献

1
Self-cleaning Spiro-OMeTAD via multimetal doping for perovskite photovoltaics.
Nat Commun. 2025 May 5;16(1):4167. doi: 10.1038/s41467-025-59350-9.
2
On-demand formation of Lewis bases for efficient and stable perovskite solar cells.
Nat Nanotechnol. 2025 Apr 17. doi: 10.1038/s41565-025-01900-9.
4
Visualizing the Structure-Property Nexus of Wide-Bandgap Perovskite Solar Cells under Thermal Stress.
Adv Sci (Weinh). 2024 Aug;11(29):e2401955. doi: 10.1002/advs.202401955. Epub 2024 May 29.
5
Eliminating Halogen Vacancies Enables Efficient MACL-Assisted Formamidine Perovskite Solar Cells.
Adv Sci (Weinh). 2024 Feb;11(7):e2306280. doi: 10.1002/advs.202306280. Epub 2023 Dec 8.
6
Rationally Designed Eco-Friendly Solvent System for High-Performance, Large-Area Perovskite Solar Cells and Modules.
Adv Sci (Weinh). 2023 Jul;10(20):e2300728. doi: 10.1002/advs.202300728. Epub 2023 May 5.
7
Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules.
Adv Sci (Weinh). 2023 Jul;10(19):e2300586. doi: 10.1002/advs.202300586. Epub 2023 Apr 25.

本文引用的文献

1
Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab?
Adv Mater. 2022 Jun;34(24):e2106540. doi: 10.1002/adma.202106540. Epub 2022 Apr 7.
2
Stabilizing perovskite-substrate interfaces for high-performance perovskite modules.
Science. 2021 Aug 20;373(6557):902-907. doi: 10.1126/science.abi6323.
3
Efficient perovskite solar cells via improved carrier management.
Nature. 2021 Feb;590(7847):587-593. doi: 10.1038/s41586-021-03285-w. Epub 2021 Feb 24.
4
Towards commercialization: the operational stability of perovskite solar cells.
Chem Soc Rev. 2020 Nov 21;49(22):8235-8286. doi: 10.1039/d0cs00573h. Epub 2020 Sep 10.
5
Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells.
Science. 2020 Mar 20;367(6484):1352-1358. doi: 10.1126/science.aba0893.
6
Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts.
Science. 2019 Aug 2;365(6452):473-478. doi: 10.1126/science.aax3294.
8
Imperfections and their passivation in halide perovskite solar cells.
Chem Soc Rev. 2019 Jul 15;48(14):3842-3867. doi: 10.1039/c8cs00853a.
10
Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture.
Science. 2018 Oct 26;362(6413):449-453. doi: 10.1126/science.aat3583. Epub 2018 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验