Ding Degong, Yao Yuxin, Hang Pengjie, Kan Chenxia, Lv Xiang, Ma Xiaoming, Li Biao, Jin Chuanhong, Yang Deren, Yu Xuegong
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
Adv Sci (Weinh). 2024 Aug;11(29):e2401955. doi: 10.1002/advs.202401955. Epub 2024 May 29.
Wide-bandgap perovskite solar cells (PSCs) toward tandem photovoltaic applications are confronted with the challenge of device thermal stability, which motivates to figure out a thorough cognition of wide-bandgap PSCs under thermal stress, using in situ atomic-resolved transmission electron microscopy (TEM) tools combing with photovoltaic performance characterizations of these devices. The in situ dynamic process of morphology-dependent defects formation at initial thermal stage and their proliferations in perovskites as the temperature increased are captured. Meanwhile, considerable iodine enables to diffuse into the hole-transport-layer along the damaged perovskite surface, which significantly degrade device performance and stability. With more intense thermal treatment, atomistic phase transition reveals the perovskite transform to PbI along the topo-coherent interface of PbI/perovskite. In conjunction with density functional theory calculations, a mutual inducement mechanism of perovskite surface damage and iodide diffusion is proposed to account for the structure-property nexus of wide-bandgap PSCs under thermal stress. The entire interpretation also guided to develop a thermal-stable monolithic perovskite/silicon tandem solar cell.
面向串联光伏应用的宽带隙钙钛矿太阳能电池(PSC)面临着器件热稳定性的挑战,这促使人们利用原位原子分辨透射电子显微镜(TEM)工具并结合这些器件的光伏性能表征,深入了解热应力下宽带隙PSC的情况。捕获了在初始热阶段形态相关缺陷形成的原位动态过程以及随着温度升高这些缺陷在钙钛矿中的扩散情况。同时,大量碘能够沿着受损的钙钛矿表面扩散到空穴传输层中,这显著降低了器件的性能和稳定性。随着热处理强度的增加,原子级相变表明钙钛矿沿着PbI/钙钛矿的拓扑相干界面转变为PbI。结合密度泛函理论计算,提出了钙钛矿表面损伤和碘化物扩散的相互诱导机制,以解释热应力下宽带隙PSC的结构-性能关系。整个解释也为开发热稳定的单片钙钛矿/硅串联太阳能电池提供了指导。