Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Metab Eng. 2022 Nov;74:61-71. doi: 10.1016/j.ymben.2022.09.003. Epub 2022 Sep 21.
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4'-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.
糖基化是重组治疗药物(如单克隆抗体(mAbs))的一个关键质量属性。mAbs 中的 N-聚糖已知会影响各种效应功能,因此此类糖蛋白的治疗用途可能取决于特定的糖型谱,以达到预期的疗效。然而,目前调节糖型谱的选择有限,主要依赖于糖基转移酶的过表达或敲除,这些酶可以引入或消除特定的聚糖,但不能在一系列值范围内进行可预测的糖型调节。在这项研究中,我们展示了可预测地调节重组 IgG 糖型谱的能力。我们使用 CRISPR/Cas9 在表达重组 IgG 的 CHO 细胞中设计了核苷酸糖合成途径,用于组合调节半乳糖基化和岩藻糖基化。敲除酶 UDP-半乳糖 4'-差向异构酶(Gale)和 GDP-L-岩藻糖合酶(Fx)导致从头合成 UDP-Gal 和 GDP-Fuc 的缺失。在 Gale 敲除的情况下,重组表达 IgG 上的 N-聚糖谱缩小到缺乏半乳糖的聚糖,主要是 A2F 聚糖(89%)。在 Gale 和 Fx 双敲除细胞系中,缺乏半乳糖和缺乏岩藻糖的 A2 聚糖占主导地位(88%)。在双敲除细胞系中,半乳糖基化和岩藻糖基化完全依赖于补救途径,这使得通过控制细胞外半乳糖和岩藻糖的可用性来调节 UDP-Gal 和 GDP-Fuc 的合成和细胞内核苷酸糖的可用性成为可能。我们证明,通过以剂量依赖的方式在细胞外添加糖,可以将重组 IgG 的糖型谱从主要包含缺乏半乳糖和缺乏岩藻糖的聚糖调节到分别高达 42%和 96%的半乳糖基化和岩藻糖基化。通过简单地改变细胞外半乳糖和/或岩藻糖的可用性,可以同时和独立地调节半乳糖基化和岩藻糖基化水平。除了实现定制糖型的生产外,这个工程 CHO 宿主平台还可以满足快速合成各种糖基化工程蛋白的需求,以评估其生物学活性。