Suppr超能文献

蛋白质工程与糖基工程的相互作用以微调抗体糖基化及其对效应功能的影响。

The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.

作者信息

Wang Qiong, Wang Tiexin, Zhang Roushu, Yang Shuang, McFarland Kevin S, Chung Cheng-Yu, Jia Hongpeng, Wang Lai-Xi, Cipollo John F, Betenbaugh Michael J

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.

出版信息

Biotechnol Bioeng. 2022 Jan;119(1):102-117. doi: 10.1002/bit.27953. Epub 2021 Oct 20.

Abstract

The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.

摘要

IgG抗体的N-聚糖模式连接在可结晶片段(Fc)区域内的一个保守位点,是一种关键的抗体质量属性,其结构变异性也会影响抗体功能。为了定制Fc糖型,已应用细胞系中的糖基工程以及Fc氨基酸突变。生成了多种糖基工程化的中国仓鼠卵巢细胞系,包括去岩藻糖基化(FUT8KO)、α-2,6-唾液酸化(ST6KI)和去岩藻糖基化α-2,6-唾液酸化(FUT8KOST6KI),它们表达野生型抗CD20 IgG(WT)或苯丙氨酸突变为丙氨酸(F241A)的突变体。对抗体N-聚糖的基质辅助激光解吸电离飞行时间质谱表征显示,F241A突变显著增加了半乳糖基化和唾液酸化含量以及聚糖分支。此外,重组人α-2,6-唾液酸转移酶的过表达导致WT和高度唾液酸化的F241A抗体N-聚糖中α-2,6-唾液酸化占主导,而非α-2,3-唾液酸化。有趣的是,敲除α-1,6-岩藻糖基转移酶(FUT8KO)可去除核心岩藻糖,降低WT抗体上带有末端半乳糖的N-聚糖含量,并增加末端GlcNAc和Man5基团的水平。进一步的补体依赖性细胞毒性(CDC)分析表明,无论生产细胞如何,与各自的F241A突变体相比,WT抗体样品具有更高的细胞毒性CDC活性,且半乳糖残基暴露更多。然而,FUT8KO WT抗体含有大量的双GlcNAc结构(G0),在所有WT抗体样品中显示出最低的CDC活性。此外,对于F241A突变体,观察到α-2,6-唾液酸化的CDC活性高于α-2,3-唾液酸化。抗体依赖性细胞毒性(ADCC)分析表明,去岩藻糖基化的WT和F241A突变体与岩藻糖基化的对应物相比,体外ADCC性能增强,无论唾液酸取代如何,去岩藻糖基化的WT抗体显示出最高的总体ADCC活性。此外,抗体与FcγRIIIA受体的结合并不总是与ADCC结果直接对应。这项研究表明,糖基工程和蛋白质工程既可以促进也可以抑制抗体效应功能,是在抗体开发过程中改变聚糖组成和功能的实用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验