Saha Provat K, Presto Albert A, Hankey Steve, Murphy Benjamin N, Allen Chris, Zhang Wenwen, Marshall Julian D, Robinson Allen L
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Environ Sci Technol. 2022 Oct 18;56(20):14284-14295. doi: 10.1021/acs.est.2c03398. Epub 2022 Sep 26.
This paper investigates the feasibility of developing national empirical models to predict ambient concentrations of sparsely monitored air pollutants at high spatial resolution. We used a data set of cooking organic aerosol (COA) and hydrocarbon-like organic aerosol (HOA; traffic primary organic PM) measured using aerosol mass spectrometry across the continental United States. The monitoring locations were selected to span the national distribution of land-use and source-activity variables commonly used for land-use regression modeling (e.g., road length, restaurant count, etc.). The models explain about 60% of the spatial variability of the measured data ( 0.63 for the COA model and 0.62 for the HOA model). Extensive cross-validation suggests that the models are robust with reasonable transferability. The models predict large urban-rural and intra-urban variability with hotspots in urban areas and along the road corridors. The predicted national concentration surfaces show reasonable spatial correlation with source-specific national chemical transport model (CTM) simulations (: 0.45 for COA, 0.4 for HOA). Our measured data, empirical models, and CTM predictions all show that COA concentrations are about two times higher than HOA. Since COA and HOA are important contributors to the intra-urban spatial variability of the total PM, our results highlight the potential importance of controlling commercial cooking emissions for air quality management in the United States.
本文研究了开发国家经验模型以高空间分辨率预测监测稀疏的空气污染物环境浓度的可行性。我们使用了一套通过气溶胶质谱法在美国大陆测量的烹饪有机气溶胶(COA)和类烃有机气溶胶(HOA;交通源一次有机颗粒物)数据集。监测地点的选择涵盖了常用于土地利用回归建模的土地利用和源活动变量的全国分布(例如道路长度、餐馆数量等)。这些模型解释了实测数据约60%的空间变异性(COA模型为0.63,HOA模型为0.62)。广泛的交叉验证表明这些模型具有稳健性且具有合理的可转移性。这些模型预测了城乡之间以及城市内部的巨大变异性,在城市地区和道路沿线存在热点。预测的全国浓度曲面与特定源的国家化学传输模型(CTM)模拟显示出合理的空间相关性(COA为0.45,HOA为0.4)。我们的实测数据、经验模型和CTM预测均表明,COA浓度约为HOA的两倍。由于COA和HOA是城市内部总颗粒物空间变异性的重要贡献者,我们的结果凸显了控制商业烹饪排放对美国空气质量管理的潜在重要性。