Suppr超能文献

非光滑变分问题及其应用。

Non-smooth variational problems and applications.

作者信息

Kovtunenko Victor A, Itou Hiromichi, Khludnev Alexander M, Rudoy Evgeny M

机构信息

Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstr. 36, 8010 Graz, Austria.

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210364. doi: 10.1098/rsta.2021.0364. Epub 2022 Sep 26.

Abstract

Mathematical methods based on the variational approach are successfully used in a broad range of applications, especially those fields that are oriented on partial differential equations. Our problem area addresses a wide class of nonlinear variational problems described by all kinds of static and evolution equations, inverse and ill-posed problems, non-smooth and non-convex optimization, and optimal control including shape and topology optimization. Within these directions, we focus but are not limited to singular and unilaterally constrained problems arising in mechanics and physics, which are governed by complex systems of generalized variational equations and inequalities. Whereas classical mathematical tools are not applicable here, we aim at a non-standard well-posedness analysis, numerical methods, asymptotic and approximation techniques including homogenization, which are successful within the primal as well as the dual variational formalism. In a broad scope, the theme issue objectives are directed toward advances that are attained in the mathematical theory of non-smooth variational problems, its physical consistency, numerical simulation and application to engineering sciences. This article is part of the theme issue 'Non-smooth variational problems and applications'.

摘要

基于变分法的数学方法在广泛的应用中得到了成功应用,特别是在那些以偏微分方程为导向的领域。我们的问题领域涉及由各种静态和演化方程、反问题和不适定问题、非光滑和非凸优化以及包括形状和拓扑优化在内的最优控制所描述的一大类非线性变分问题。在这些方向上,我们关注但不限于力学和物理学中出现的奇异和单边约束问题,这些问题由广义变分方程和不等式的复杂系统所支配。虽然经典数学工具在此不适用,但我们旨在进行非标准适定性分析、数值方法、渐近和近似技术,包括均匀化,这些方法在原始和对偶变分形式中都很成功。从广泛的范围来看,本专题的目标是朝着非光滑变分问题的数学理论、其物理一致性、数值模拟以及在工程科学中的应用所取得的进展。本文是“非光滑变分问题及应用”专题的一部分。

相似文献

1
Non-smooth variational problems and applications.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210364. doi: 10.1098/rsta.2021.0364. Epub 2022 Sep 26.
2
A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210352. doi: 10.1098/rsta.2021.0352. Epub 2022 Sep 26.
3
A generalized Stokes system with a non-smooth slip boundary condition.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210353. doi: 10.1098/rsta.2021.0353. Epub 2022 Sep 26.
4
Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle.
Philos Trans A Math Phys Eng Sci. 2024 Aug 23;382(2277):20230298. doi: 10.1098/rsta.2023.0298. Epub 2024 Jul 15.
5
On the numerical corroboration of an obstacle problem for linearly elastic flexural shells.
Philos Trans A Math Phys Eng Sci. 2024 Aug 23;382(2277):20230306. doi: 10.1098/rsta.2023.0306. Epub 2024 Jul 15.
6
Lagrange multipliers and nonlinear variational inequalities with gradient constraints.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210355. doi: 10.1098/rsta.2021.0355. Epub 2022 Sep 26.
7
Quasi-variational inequality for the nonlinear indentation problem: a power-law hardening model.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210362. doi: 10.1098/rsta.2021.0362. Epub 2022 Sep 26.
8
Forward and inverse problems for creep models in viscoelasticity.
Philos Trans A Math Phys Eng Sci. 2024 Aug 23;382(2277):20230295. doi: 10.1098/rsta.2023.0295. Epub 2024 Jul 15.
9
Relaxed solutions for incompressible inviscid flows: a variational and gravitational approximation to the initial value problem.
Philos Trans A Math Phys Eng Sci. 2022 Mar 21;380(2219):20210078. doi: 10.1098/rsta.2021.0078. Epub 2022 Jan 31.
10
Equilibrium problem for a thermoelastic Kirchhoff-Love plate with a delaminated flat rigid inclusion.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210363. doi: 10.1098/rsta.2021.0363. Epub 2022 Sep 26.

本文引用的文献

1
Interaction of scales for a singularly perturbed degenerating nonlinear Robin problem.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20220159. doi: 10.1098/rsta.2022.0159. Epub 2022 Sep 26.
2
Unique solvability of a crack problem with Signorini-type and Tresca friction conditions in a linearized elastodynamic body.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20220225. doi: 10.1098/rsta.2022.0225. Epub 2022 Sep 26.
3
On a frictional unilateral contact problem in nonlinear elasticity-existence and smoothing procedure.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210356. doi: 10.1098/rsta.2021.0356. Epub 2022 Sep 26.
4
Lagrange multipliers and nonlinear variational inequalities with gradient constraints.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210355. doi: 10.1098/rsta.2021.0355. Epub 2022 Sep 26.
5
Multiscale analysis of stationary thermoelastic vibrations of a composite material.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210354. doi: 10.1098/rsta.2021.0354. Epub 2022 Sep 26.
6
A generalized Stokes system with a non-smooth slip boundary condition.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210353. doi: 10.1098/rsta.2021.0353. Epub 2022 Sep 26.
7
Equilibrium problem for a thermoelastic Kirchhoff-Love plate with a delaminated flat rigid inclusion.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210363. doi: 10.1098/rsta.2021.0363. Epub 2022 Sep 26.
8
A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210352. doi: 10.1098/rsta.2021.0352. Epub 2022 Sep 26.
9
Quasi-variational inequality for the nonlinear indentation problem: a power-law hardening model.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210362. doi: 10.1098/rsta.2021.0362. Epub 2022 Sep 26.
10
On solutions for a generalized Navier-Stokes-Fourier system fulfilling the entropy equality.
Philos Trans A Math Phys Eng Sci. 2022 Nov 14;380(2236):20210351. doi: 10.1098/rsta.2021.0351. Epub 2022 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验