IEEE Trans Neural Syst Rehabil Eng. 2022;30:2824-2833. doi: 10.1109/TNSRE.2022.3209155. Epub 2022 Oct 20.
Although brain-computer interface (BCI) shows promising prospects to help post-stroke patients recover their motor function, its decoding accuracy is still highly dependent on feature extraction methods. Most current feature extractors in BCI are classification-based methods, yet very few works from literature use metric learning based methods to learn representations for BCI. To circumvent this shortage, we propose a deep metric learning based method, Weighted Convolutional Siamese Network (WCSN) to learn representations from electroencephalogram (EEG) signal. This approach can enhance the decoding accuracy by learning a low dimensional embedding to extract distance-based representations from pair-wise EEG data. To enhance training efficiency and algorithm performance, a temporal-spectral distance weighted sampling method is proposed to select more informative input samples. In addition, an adaptive training strategy is adopted to address the session-to-session non-stationarity by progressively updating the subject-specific model. The proposed method is applied on both upper limb and lower limb neurorehabilitation datasets acquired from 33 stroke patients, with a total of 358 sessions. Results indicate that using k-Nearest Neighbor as the classification algorithm, the proposed method yielded 72.8% and 66.0% accuracies for the two datasets respectively, significantly better than the other state-of-the-arts ( ). Without losing generality, we also evaluated the proposed method on two publicly available datasets acquired from healthy subjects, wherein the proposed algorithm demonstrated superior performance at most cases as well. Our results support, for the first time, the use of a metric learning based feature extractor to learn representations from non-stationary EEG signals for BCI-assisted post-stroke rehabilitation.
尽管脑机接口 (BCI) 显示出有希望帮助中风后患者恢复运动功能的前景,但它的解码准确性仍然高度依赖于特征提取方法。目前 BCI 中的大多数特征提取器都是基于分类的方法,但很少有文献使用基于度量学习的方法来学习 BCI 的表示。为了避免这一不足,我们提出了一种基于深度度量学习的方法,即加权卷积双子网络 (WCSN),用于从脑电图 (EEG) 信号中学习表示。该方法通过学习低维嵌入来从两两 EEG 数据中提取基于距离的表示,可以提高解码准确性。为了提高训练效率和算法性能,提出了一种时频距离加权采样方法来选择更有信息量的输入样本。此外,采用自适应训练策略通过逐步更新特定于主题的模型来解决会话间的非平稳性。所提出的方法应用于 33 名中风患者采集的上肢和下肢神经康复数据集,共有 358 个会话。结果表明,使用 k-最近邻作为分类算法,所提出的方法分别为两个数据集产生了 72.8%和 66.0%的准确率,明显优于其他最新技术 ( )。不失一般性,我们还在两个来自健康受试者的公开数据集上评估了所提出的方法,在所提出的算法在大多数情况下也表现出了优越的性能。我们的结果首次支持使用基于度量学习的特征提取器从非平稳 EEG 信号中学习 BCI 辅助中风后康复的表示。