Suppr超能文献

小儿肺动脉高压心室-动脉血流动力学的数据驱动计算模型

Data-driven computational models of ventricular-arterial hemodynamics in pediatric pulmonary arterial hypertension.

作者信息

Tossas-Betancourt Christopher, Li Nathan Y, Shavik Sheikh M, Afton Katherine, Beckman Brian, Whiteside Wendy, Olive Mary K, Lim Heang M, Lu Jimmy C, Phelps Christina M, Gajarski Robert J, Lee Simon, Nordsletten David A, Grifka Ronald G, Dorfman Adam L, Baek Seungik, Lee Lik Chuan, Figueroa C Alberto

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.

Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Physiol. 2022 Sep 7;13:958734. doi: 10.3389/fphys.2022.958734. eCollection 2022.

Abstract

Pulmonary arterial hypertension (PAH) is a complex disease involving increased resistance in the pulmonary arteries and subsequent right ventricular (RV) remodeling. Ventricular-arterial interactions are fundamental to PAH pathophysiology but are rarely captured in computational models. It is important to identify metrics that capture and quantify these interactions to inform our understanding of this disease as well as potentially facilitate patient stratification. Towards this end, we developed and calibrated two multi-scale high-resolution closed-loop computational models using open-source software: a high-resolution arterial model implemented using CRIMSON, and a high-resolution ventricular model implemented using FEniCS. Models were constructed with clinical data including non-invasive imaging and invasive hemodynamic measurements from a cohort of pediatric PAH patients. A contribution of this work is the discussion of inconsistencies in anatomical and hemodynamic data routinely acquired in PAH patients. We proposed and implemented strategies to mitigate these inconsistencies, and subsequently use this data to inform and calibrate computational models of the ventricles and large arteries. Computational models based on adjusted clinical data were calibrated until the simulated results for the high-resolution arterial models matched within 10% of adjusted data consisting of pressure and flow, whereas the high-resolution ventricular models were calibrated until simulation results matched adjusted data of volume and pressure waveforms within 10%. A statistical analysis was performed to correlate numerous data-derived and model-derived metrics with clinically assessed disease severity. Several model-derived metrics were strongly correlated with clinically assessed disease severity, suggesting that computational models may aid in assessing PAH severity.

摘要

肺动脉高压(PAH)是一种复杂的疾病,涉及肺动脉阻力增加以及随后的右心室(RV)重塑。心室 - 动脉相互作用是PAH病理生理学的基础,但在计算模型中很少被捕捉到。识别能够捕捉和量化这些相互作用的指标对于增进我们对这种疾病的理解以及潜在地促进患者分层非常重要。为此,我们使用开源软件开发并校准了两个多尺度高分辨率闭环计算模型:一个使用CRIMSON实现的高分辨率动脉模型,以及一个使用FEniCS实现的高分辨率心室模型。模型构建使用了临床数据,包括来自一组儿科PAH患者的非侵入性成像和侵入性血流动力学测量数据。这项工作的一个贡献是讨论了PAH患者常规获取的解剖学和血流动力学数据中的不一致性。我们提出并实施了减轻这些不一致性的策略,随后使用这些数据为心室和大动脉的计算模型提供信息并进行校准。基于调整后的临床数据的计算模型进行校准,直到高分辨率动脉模型的模拟结果与由压力和流量组成的调整后数据相差在10%以内,而高分辨率心室模型校准到模拟结果与体积和压力波形的调整后数据相差在10%以内。进行了统计分析,以将大量数据衍生和模型衍生的指标与临床评估的疾病严重程度相关联。几个模型衍生的指标与临床评估的疾病严重程度密切相关,表明计算模型可能有助于评估PAH的严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e2/9490558/6bdb478b40e3/fphys-13-958734-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验