Arthurs Christopher J, Xiao Nan, Moireau Philippe, Schaeffter Tobias, Figueroa C Alberto
Dept. of Biomedical Engineering, King's College London, London, UK.
Inria, Inria Saclay-Ile de France, 91128 Palaiseau, France.
Adv Model Simul Eng Sci. 2020;7(1):48. doi: 10.1186/s40323-020-00186-x. Epub 2020 Dec 2.
A major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A "Netlist" implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.
构建三维患者特异性血流动力学模型的一个主要挑战是校准模型参数,以匹配在临床上获取的关于流量、压力、壁运动等的患者数据。当前的工作流程是手动且耗时的。这项工作提出了一个用于心血管流动中模型参数估计的灵活计算框架,该框架依赖于以下基本贡献。(i) 一种用于壁材料数据同化和简单集总参数网络 (LPN) 边界条件模型参数的降阶无迹卡尔曼滤波器 (ROUKF) 模型。(ii) 一种用于更复杂 LPN 的约束最小二乘增强 (ROUKF-CLS)。(iii) 一种“网表”实现,支持在此类复杂 LPN 中轻松过滤参数。使用来自健康志愿者的关于解剖结构、流量和压力的非侵入性患者特异性数据展示了 ROUKF 算法。使用冠状动脉 LPN 上的合成数据展示了 ROUKF-CLS 算法。本文中描述的方法已作为 CRIMSON 血流动力学软件包的一部分实现。