Suppr超能文献

利用CRISPR/Cas9技术改造用于分子制药的[具体物质]的N-糖基化途径。 (你原文中“-glycosylation”前的内容缺失,我根据经验推测补充了“N-”,你可根据实际情况修改)

Engineering the -glycosylation pathway of for molecular pharming using CRISPR/Cas9.

作者信息

Göritzer Kathrin, Grandits Melanie, Grünwald-Gruber Clemens, Figl Rudolf, Mercx Sébastien, Navarre Catherine, Ma Julian K-C, Teh Audrey Y-H

机构信息

Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom.

Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria.

出版信息

Front Plant Sci. 2022 Sep 8;13:1003065. doi: 10.3389/fpls.2022.1003065. eCollection 2022.

Abstract

Molecular pharming in plants offers exciting possibilities to address global access to modern biologics. However, differences in the -glycosylation pathway including the presence of β(1,2)-xylose and core α(1,3)-fucose can affect activity, potency and immunogenicity of plant-derived proteins. Successful glycoengineering approaches toward human-like structures with no changes in plant phenotype, growth, or recombinant protein expression levels have been reported for and . Such engineering of -glycosylation would also be desirable for , which remains the crop of choice for recombinant protein pharmaceuticals required at massive scale and for manufacturing technology transfer to less developed countries. Here, we generated cv. SR-1 β(1,2)-xylosyltransferase () and α(1,3)-fucosyltransferase () knockout lines using CRISPR/Cas9 multiplex genome editing, targeting three conserved regions of the four and two genes. These two enzymes are responsible for generating non-human -glycan structures. We confirmed full functional knockout of transformants by immunoblotting of total soluble protein by antibodies recognizing β(1,2)-xylose and core α(1,3)-fucose, mass spectrometry analysis of recombinantly produced VRC01, a broadly neutralizing anti-HIV-1 hIgG1 antibody, and Sanger sequencing of targeted regions of the putative transformants. These data represent an important step toward establishing as a biologics platform for Global Health.

摘要

植物分子制药为解决全球对现代生物制剂的获取问题提供了令人兴奋的可能性。然而,糖基化途径的差异,包括β(1,2)-木糖和核心α(1,3)-岩藻糖的存在,会影响植物源蛋白质的活性、效力和免疫原性。对于[具体植物1]和[具体植物2],已经报道了成功的糖基工程方法,可实现类似人类的结构,而不改变植物表型、生长或重组蛋白表达水平。对于[目标植物]而言,这种糖基化工程也是可取的,它仍然是大规模生产所需的重组蛋白药物以及向欠发达国家进行制造技术转移的首选作物。在这里,我们使用CRISPR/Cas9多重基因组编辑技术,针对四个[基因1]和两个[基因2]基因的三个保守区域,生成了[目标植物]品种cv. SR-1的β(1,2)-木糖基转移酶([酶1])和α(1,3)-岩藻糖基转移酶([酶2])敲除系。这两种酶负责生成非人类糖基结构。我们通过用识别β(1,2)-木糖和核心α(1,3)-岩藻糖的抗体对总可溶性蛋白进行免疫印迹、对重组产生的广泛中和抗HIV-1 hIgG1抗体VRC01进行质谱分析以及对推定转化体的靶向区域进行桑格测序,证实了转化体的完全功能性敲除。这些数据代表了朝着将[目标植物]确立为全球健康生物制剂平台迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5818/9493077/b67ef3b5c42f/fpls-13-1003065-g001.jpg

相似文献

1
Engineering the -glycosylation pathway of for molecular pharming using CRISPR/Cas9.
Front Plant Sci. 2022 Sep 8;13:1003065. doi: 10.3389/fpls.2022.1003065. eCollection 2022.
4
Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.
Plant Biotechnol J. 2016 Feb;14(2):533-42. doi: 10.1111/pbi.12403. Epub 2015 May 25.
7
A genome-edited N. benthamiana line for industrial-scale production of recombinant glycoproteins with targeted N-glycosylation.
Biotechnol J. 2024 Jan;19(1):e2300323. doi: 10.1002/biot.202300323. Epub 2023 Oct 15.
9
Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.
Plant Biotechnol J. 2008 May;6(4):392-402. doi: 10.1111/j.1467-7652.2008.00330.x. Epub 2008 Mar 13.
10
Inactivation of and Genes in BY-2 Cells Results in Glycoproteins With Highly Homogeneous, High-Mannose -Glycans.
Front Plant Sci. 2021 Jan 27;12:634023. doi: 10.3389/fpls.2021.634023. eCollection 2021.

引用本文的文献

2
Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy.
Plant Biotechnol J. 2025 Jan;23(1):4-16. doi: 10.1111/pbi.14458. Epub 2024 Nov 19.
3
Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems.
Heliyon. 2024 Sep 7;10(18):e37634. doi: 10.1016/j.heliyon.2024.e37634. eCollection 2024 Sep 30.
4
Enhanced efficacy of glycoengineered rice cell-produced trastuzumab.
Plant Biotechnol J. 2024 Nov;22(11):3068-3081. doi: 10.1111/pbi.14429. Epub 2024 Jul 17.
5
Implications of O-glycan modifications in the hinge region of a plant-produced SARS-CoV-2-IgA antibody on functionality.
Front Bioeng Biotechnol. 2024 Mar 6;12:1329018. doi: 10.3389/fbioe.2024.1329018. eCollection 2024.
6
Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals.
Int J Mol Sci. 2023 Dec 17;24(24):17575. doi: 10.3390/ijms242417575.
7
The tobacco GNTI stem region harbors a strong motif for homomeric protein complex formation.
Front Plant Sci. 2023 Nov 28;14:1320051. doi: 10.3389/fpls.2023.1320051. eCollection 2023.
8
A genome-edited N. benthamiana line for industrial-scale production of recombinant glycoproteins with targeted N-glycosylation.
Biotechnol J. 2024 Jan;19(1):e2300323. doi: 10.1002/biot.202300323. Epub 2023 Oct 15.
9
Killer to cure: Expression and production costs calculation of tobacco plant-made cancer-immune checkpoint inhibitors.
Plant Biotechnol J. 2023 Jun;21(6):1254-1269. doi: 10.1111/pbi.14034. Epub 2023 Mar 18.

本文引用的文献

1
Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector.
Biotechnol Bioeng. 2022 Jun;119(6):1660-1672. doi: 10.1002/bit.28073. Epub 2022 Mar 16.
2
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
3
Molecular Pharming for low and middle income countries.
Curr Opin Biotechnol. 2020 Feb;61:53-59. doi: 10.1016/j.copbio.2019.10.005. Epub 2019 Nov 18.
4
Engineering the interactions between a plant-produced HIV antibody and human Fc receptors.
Plant Biotechnol J. 2020 Feb;18(2):402-414. doi: 10.1111/pbi.13207. Epub 2019 Aug 10.
6
Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes.
J Proteome Res. 2017 Jul 7;16(7):2560-2570. doi: 10.1021/acs.jproteome.7b00121. Epub 2017 May 26.
9
Applying CRISPR/Cas for genome engineering in plants: the best is yet to come.
Curr Opin Plant Biol. 2017 Apr;36:1-8. doi: 10.1016/j.pbi.2016.11.011. Epub 2016 Nov 30.
10
Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana.
Plant Biotechnol J. 2017 Feb;15(2):197-206. doi: 10.1111/pbi.12602. Epub 2016 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验