Göritzer Kathrin, Grandits Melanie, Grünwald-Gruber Clemens, Figl Rudolf, Mercx Sébastien, Navarre Catherine, Ma Julian K-C, Teh Audrey Y-H
Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, United Kingdom.
Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria.
Front Plant Sci. 2022 Sep 8;13:1003065. doi: 10.3389/fpls.2022.1003065. eCollection 2022.
Molecular pharming in plants offers exciting possibilities to address global access to modern biologics. However, differences in the -glycosylation pathway including the presence of β(1,2)-xylose and core α(1,3)-fucose can affect activity, potency and immunogenicity of plant-derived proteins. Successful glycoengineering approaches toward human-like structures with no changes in plant phenotype, growth, or recombinant protein expression levels have been reported for and . Such engineering of -glycosylation would also be desirable for , which remains the crop of choice for recombinant protein pharmaceuticals required at massive scale and for manufacturing technology transfer to less developed countries. Here, we generated cv. SR-1 β(1,2)-xylosyltransferase () and α(1,3)-fucosyltransferase () knockout lines using CRISPR/Cas9 multiplex genome editing, targeting three conserved regions of the four and two genes. These two enzymes are responsible for generating non-human -glycan structures. We confirmed full functional knockout of transformants by immunoblotting of total soluble protein by antibodies recognizing β(1,2)-xylose and core α(1,3)-fucose, mass spectrometry analysis of recombinantly produced VRC01, a broadly neutralizing anti-HIV-1 hIgG1 antibody, and Sanger sequencing of targeted regions of the putative transformants. These data represent an important step toward establishing as a biologics platform for Global Health.
植物分子制药为解决全球对现代生物制剂的获取问题提供了令人兴奋的可能性。然而,糖基化途径的差异,包括β(1,2)-木糖和核心α(1,3)-岩藻糖的存在,会影响植物源蛋白质的活性、效力和免疫原性。对于[具体植物1]和[具体植物2],已经报道了成功的糖基工程方法,可实现类似人类的结构,而不改变植物表型、生长或重组蛋白表达水平。对于[目标植物]而言,这种糖基化工程也是可取的,它仍然是大规模生产所需的重组蛋白药物以及向欠发达国家进行制造技术转移的首选作物。在这里,我们使用CRISPR/Cas9多重基因组编辑技术,针对四个[基因1]和两个[基因2]基因的三个保守区域,生成了[目标植物]品种cv. SR-1的β(1,2)-木糖基转移酶([酶1])和α(1,3)-岩藻糖基转移酶([酶2])敲除系。这两种酶负责生成非人类糖基结构。我们通过用识别β(1,2)-木糖和核心α(1,3)-岩藻糖的抗体对总可溶性蛋白进行免疫印迹、对重组产生的广泛中和抗HIV-1 hIgG1抗体VRC01进行质谱分析以及对推定转化体的靶向区域进行桑格测序,证实了转化体的完全功能性敲除。这些数据代表了朝着将[目标植物]确立为全球健康生物制剂平台迈出的重要一步。