Suppr超能文献

优化小麦和小黑麦在不同生产环境下的水分和氮素生产力,以提高烘焙产品的可持续性。

Optimizing water and nitrogen productivity of wheat and triticale across diverse production environments to improve the sustainability of baked products.

作者信息

Tamagno Santiago, Pittelkow Cameron M, Fohner George, Nelsen Taylor S, Hegarty Joshua M, Carter Claudia E, Vang Teng, Lundy Mark E

机构信息

Department of Plant Sciences, University of California, Davis, Davis, CA, United States.

California Grain Foundation, Woodland, CA, United States.

出版信息

Front Plant Sci. 2022 Sep 2;13:952303. doi: 10.3389/fpls.2022.952303. eCollection 2022.

Abstract

Wheat ( L.) is a major global commodity and the primary source for baked products in agri-food supply chains. Consumers are increasingly demanding more nutritious food products with less environmental degradation, particularly related to water and fertilizer nitrogen (N) inputs. While triticale (× ) is often referenced as having superior abiotic stress tolerance compared to wheat, few studies have compared crop productivity and resource use efficiencies under a range of N-and water-limited conditions. Because previous work has shown that blending wheat with triticale in a 40:60 ratio can yield acceptable and more nutritious baked products, we tested the hypothesis that increasing the use of triticale grain in the baking supply chain would reduce the environmental footprint for water and N fertilizer use. Using a dataset comprised of 37 site-years encompassing normal and stress-induced environments in California, we assessed yield, yield stability, and the efficiency of water and fertilizer N use for 67 and 17 commercial varieties of wheat and triticale, respectively. By identifying environments that favor one crop type over the other, we then quantified the sustainability implications of producing a mixed triticale-wheat flour at the regional scale. Results indicate that triticale outyielded wheat by 11% ( < 0.05) and 19% ( < 0.05) under average and N-limited conditions, respectively. However, wheat was 3% ( < 0.05) more productive in water-limited environments. Overall, triticale had greater yield stability and produced more grain per unit of water and N fertilizer inputs, especially in high-yielding environments. We estimate these differences could translate to regional N fertilizer savings (up to 555 Mg N or 166 CO-eq kg ha) in a 40:60 blending scenario when wheat is sourced from water-limited and low-yielding fields and triticale from N-limited and high-yielding areas. Results suggest that optimizing the agronomic and environmental benefits of triticale would increase the overall resource use efficiency and sustainability of the agri-food system, although such a transition would require fundamental changes to the current system spanning producers, processors, and consumers.

摘要

小麦(L.)是一种主要的全球大宗商品,也是农业食品供应链中烘焙产品的主要原料。消费者越来越要求获得更具营养且对环境破坏更小的食品,特别是与水和氮肥投入相关的方面。虽然小黑麦(×)通常被认为比小麦具有更强的非生物胁迫耐受性,但很少有研究比较在一系列氮素和水分限制条件下的作物生产力和资源利用效率。由于先前的研究表明,以40:60的比例将小麦与小黑麦混合可以生产出可接受的且更具营养的烘焙产品,我们检验了这样一个假设:在烘焙供应链中增加小黑麦谷物的使用量将减少水和氮肥使用的环境足迹。利用一个包含37个地点 - 年份的数据组,这些地点涵盖了加利福尼亚州的正常和胁迫诱导环境,我们分别评估了67个小麦商业品种和17个小黑麦商业品种的产量、产量稳定性以及水和氮肥的使用效率。通过确定有利于一种作物类型而非另一种作物类型的环境,我们随后量化了在区域尺度上生产混合小黑麦 - 小麦粉的可持续性影响。结果表明,在平均条件和氮素限制条件下,小黑麦的产量分别比小麦高出11%(<0.05)和19%(<0.05)。然而,在水分限制环境下,小麦的生产力高出3%(<0.05)。总体而言,小黑麦具有更高的产量稳定性,并且每单位水和氮肥投入产出的谷物更多,尤其是在高产环境中。我们估计,当从小麦水分限制和低产田地以及小黑麦氮素限制和高产地区获取原料时,在40:60的混合方案中,这些差异可能转化为区域氮肥节省量(高达555 Mg N或166 CO₂ - eq kg ha)。结果表明,优化小黑麦的农艺和环境效益将提高农业食品系统的整体资源利用效率和可持续性,尽管这种转变需要对当前涵盖生产者、加工者和消费者的系统进行根本性变革。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验