Suppr超能文献

相似文献

1
Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2204666119. doi: 10.1073/pnas.2204666119. Epub 2022 Sep 26.
2
Theory-Guided Design of Unconventional Phase Metal Heteronanostructures for Higher-Rate Stable Li-CO and Li-Air Batteries.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202416947. doi: 10.1002/anie.202416947. Epub 2024 Nov 6.
3
Reversible Carbon Dioxide/Lithium Oxalate Regulation toward Advanced Aprotic Lithium Carbon Dioxide Battery.
Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202400132. doi: 10.1002/anie.202400132. Epub 2024 Mar 15.
4
Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products.
J Am Chem Soc. 2024 Jan 17;146(2):1305-1317. doi: 10.1021/jacs.3c08656. Epub 2024 Jan 3.
7
Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long-Life Rechargeable Lithium-CO Batteries.
Adv Mater. 2018 Dec;30(51):e1803124. doi: 10.1002/adma.201803124. Epub 2018 Nov 4.
8
A Renewable Light-Promoted Flexible Li-CO Battery with Ultrahigh Energy Efficiency of 97.9.
Small. 2021 Jul;17(26):e2100642. doi: 10.1002/smll.202100642. Epub 2021 Jun 3.
9
Understanding the Dual-Phase Synergy Mechanism in MnO-MnO Catalyst for Efficient Li-CO Batteries.
ACS Appl Mater Interfaces. 2020 Jul 29;12(30):33846-33854. doi: 10.1021/acsami.0c09644. Epub 2020 Jul 16.
10
A highly reversible force-assisted Li - CO battery based on piezoelectric effect of BiNaTiO nanorods.
J Colloid Interface Sci. 2024 Feb 15;656:146-154. doi: 10.1016/j.jcis.2023.11.090. Epub 2023 Nov 19.

引用本文的文献

1
Reversible and irreversible reaction mechanisms of Li-CO batteries.
Chem Sci. 2024 Feb 16;15(13):4804-4810. doi: 10.1039/d4sc00383g. eCollection 2024 Mar 27.
2
Constructing molecule-metal relay catalysis over heterophase metallene for high-performance rechargeable zinc-nitrate/ethanol batteries.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2311149120. doi: 10.1073/pnas.2311149120. Epub 2023 Dec 8.
3
Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO chemistry.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2219692120. doi: 10.1073/pnas.2219692120. Epub 2023 Mar 30.
4
Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217454120. doi: 10.1073/pnas.2217454120. Epub 2023 Jan 31.

本文引用的文献

1
Phase engineering of nanomaterials.
Nat Rev Chem. 2020 May;4(5):243-256. doi: 10.1038/s41570-020-0173-4. Epub 2020 Apr 1.
3
Engineering the Active Sites of Graphene Catalyst: From CO Activation to Activate Li-CO Batteries.
ACS Nano. 2021 Jun 22;15(6):9841-9850. doi: 10.1021/acsnano.1c00756. Epub 2021 May 25.
4
A highly stable and flexible zeolite electrolyte solid-state Li-air battery.
Nature. 2021 Apr;592(7855):551-557. doi: 10.1038/s41586-021-03410-9. Epub 2021 Apr 21.
6
Undercoordinated Active Sites on 4H Gold Nanostructures for CO Reduction.
Nano Lett. 2020 Nov 11;20(11):8074-8080. doi: 10.1021/acs.nanolett.0c03073. Epub 2020 Oct 26.
7
Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles.
J Am Chem Soc. 2020 Nov 4;142(44):18971-18980. doi: 10.1021/jacs.0c09461. Epub 2020 Oct 21.
8
Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis.
Acc Chem Res. 2020 Oct 20;53(10):2106-2118. doi: 10.1021/acs.accounts.0c00487. Epub 2020 Sep 24.
9
Heterophase fcc-2H-fcc gold nanorods.
Nat Commun. 2020 Jul 3;11(1):3293. doi: 10.1038/s41467-020-17068-w.
10
Ethylene Selectivity in Electrocatalytic CO Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study.
J Am Chem Soc. 2020 Jul 22;142(29):12760-12766. doi: 10.1021/jacs.0c04981. Epub 2020 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验