Zhou Jingwen, Wang Tianshuai, Chen Lin, Liao Lingwen, Wang Yunhao, Xi Shibo, Chen Bo, Lin Ting, Zhang Qinghua, Ye Chenliang, Zhou Xichen, Guan Zhiqiang, Zhai Li, He Zhen, Wang Gang, Wang Juan, Yu Jinli, Ma Yangbo, Lu Pengyi, Xiong Yuecheng, Lu Shiyao, Chen Ye, Wang Bin, Lee Chun-Sing, Cheng Jianli, Gu Lin, Zhao Tianshou, Fan Zhanxi
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2204666119. doi: 10.1073/pnas.2204666119. Epub 2022 Sep 26.
Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li-mediated CO reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.
鉴于高能量密度和环保特性,锂二氧化碳(Li-CO₂)电池被认为是推动碳中和及太空探索的下一代能源技术。然而,Li-CO₂电池存在反应动力学迟缓的问题,导致过电位大且能量效率低。在此,我们观察到在金模板上生长有非常规的4H/面心立方(fcc)铱(Ir)纳米结构的非质子Li-CO₂电池中,反应动力学得到增强。值得注意的是,在促进锂介导的CO₂还原和析出的往返反应动力学方面,4H/fcc Ir比fcc Ir表现出更优异的电化学性能,实现了低于3.61 V的低充电平台和83.8%的高能量效率。非原位/原位研究和理论计算表明,增强的反应动力学源于通过Ir-O耦合在4H/fcc Ir上高度可逆地生成非晶态/低结晶度的放电产物。具有4H/fcc Ir的柔性Li-CO₂软包电池的展示表明在实际场景中使用非常规相纳米材料的可行性。