Suppr超能文献

一种基于区块链技术并与联邦学习技术相结合的安全医疗保健5.0系统。

A secure healthcare 5.0 system based on blockchain technology entangled with federated learning technique.

作者信息

Rehman Abdur, Abbas Sagheer, Khan M A, Ghazal Taher M, Adnan Khan Muhammad, Mosavi Amir

机构信息

School of Computer Science, National College of Business Administration and Economics, Lahore, 54000, Pakistan.

Riphah School of Computing and Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan.

出版信息

Comput Biol Med. 2022 Nov;150:106019. doi: 10.1016/j.compbiomed.2022.106019. Epub 2022 Sep 21.

Abstract

In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases. The proposed system demonstrates that the approach is optimized effectively for healthcare monitoring. In contrast, the proposed healthcare 5.0 system entangled with FL Approach achieves 93.22% accuracy for disease prediction, and the proposed RTS-DELM-based secure healthcare 5.0 system achieves 96.18% accuracy for the estimation of intrusion detection.

摘要

近年来,全球医疗物联网(IoMT)行业发展迅猛。由于IoMT网络规模巨大且广泛部署,安全和隐私成为IoMT的关键问题。机器学习(ML)和区块链(BC)技术显著提升了医疗保健5.0的能力和设施,催生了一个名为“智能医疗保健”的新领域。通过早期识别问题,智能医疗保健系统有助于避免长期损害。这将提高患者的生活质量,同时减轻他们的压力和医疗成本。IoMT在信息技术领域实现了一系列功能,其中之一就是智能交互式医疗保健。然而,将医疗数据整合到单个存储位置以训练强大的机器学习模型引发了对隐私、所有权以及更高集中度合规性的担忧。联邦学习(FL)通过利用集中式聚合服务器来分发全局学习模型,克服了上述困难。同时,本地参与者保留对患者信息的控制权,确保数据的保密性和安全性。本文对医疗保健5.0中与联邦学习纠缠的区块链技术的研究结果进行了全面分析。本研究的目的是通过利用区块链技术和入侵检测系统(IDS)来构建医疗保健5.0中的安全健康监测系统,以检测医疗网络中的任何恶意活动,并使医生能够通过医疗传感器监测患者,并通过疾病预测定期采取必要措施。所提出的系统表明该方法针对医疗保健监测进行了有效优化。相比之下,所提出的与FL方法纠缠的医疗保健5.0系统在疾病预测方面的准确率达到93.22%,所提出的基于RTS-DELM的安全医疗保健5.0系统在入侵检测估计方面的准确率达到96.18%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验