Division of Sustainable Resources of Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
Geological Disposal Barrier System R&D Division, Radioactive Waste Management Funding and Research Center, Nichirei Akashicho Bldg.12F, 6-4, Akashicho, Chuo-Ku, Tokyo, 104-0044, Japan.
Sci Rep. 2022 Sep 26;12(1):16012. doi: 10.1038/s41598-022-20482-3.
Silicate glasses are durable materials in our daily life, but corrosion rate accelerates under alkaline aqueous environment. Such situation has raised concerns, for example, in nuclear waste disposal where vitrified wastes encounter to alkaline leachate from surrounding concrete materials. Here we report volcanic glass example surviving with a hyperalkaline groundwater (pH > 11) and high flow rate for about 4000 years. The tiny glass fragments were extracted from the volcanic ash layer sandwiched between ultramafic sediments using microanalytical techniques. Sharp elemental distributions at the glass surface, where amorphous-like smectite precursors and crystalline smectites coexist, suggest the corrosion by an interface-coupled dissolution-precipitation mechanism rather than inter-diffusion. The corrosion rate was maintained at, the minimum, 2.5 orders of magnitude less than the rate observed for fresh glass, even in the presence of Fe and Mg that might have consumed Si through the silicate precipitation.
硅酸盐玻璃在我们的日常生活中是一种耐用的材料,但在碱性水溶液环境下,其腐蚀速率会加快。这种情况引起了人们的关注,例如在核废料处理中,玻璃固化废物会遇到周围混凝土材料的碱性浸出液。在这里,我们报告了一个火山玻璃的例子,它在 pH 值大于 11 的高碱性地下水中以高流速存在了大约 4000 年。使用微分析技术,从夹在超镁铁质沉积物之间的火山灰层中提取了微小的玻璃碎片。玻璃表面的元素分布非常尖锐,无定形似的蒙脱石前体和结晶蒙脱石共存,表明腐蚀是通过界面耦合的溶解-沉淀机制而不是扩散机制发生的。即使存在可能通过硅酸盐沉淀消耗硅的铁和镁,腐蚀速率仍保持在最低限度,比新鲜玻璃的腐蚀速率低 2.5 个数量级以上。