Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States.
Department of Biological Sciences, Columbia University, New York, United States.
Elife. 2022 Sep 27;11:e72847. doi: 10.7554/eLife.72847.
Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly, raising the possibility that these pathways were lost from organisms with access to abundant EAAs. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from . These pathways were de novo synthesized in 3 kilobase chunks, assembled and genomically integrated into a Chinese hamster ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation. C-tracing verified de novo biosynthesis of valine and further revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate. Increasing the dosage of downstream boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at 3.2 days per doubling. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.
在独立的真核生物谱系中,主要的基因组缺失导致了 20 种标准氨基酸中的 9 种生物合成途径的反复祖先缺失。虽然导致这些多系缺失事件的进化力量还不太清楚,但结果是现存的后生动物无法产生 9 种必需氨基酸(EAA)。先前的研究强调,EAA 生物合成往往更耗费能量,这增加了这些途径可能是从能够获得丰富 EAA 的生物中丢失的可能性。目前尚不清楚现代后生动物是否能够重新接受这些途径,以恢复很久以前丢失的生物合成能力,或者进化是否使 EAA 途径与后生动物代谢不相容。在这里,我们报告了在哺乳动物细胞中重新建立 EAA 生物合成功能的大规模合成基因组学研究的进展。我们根据从. 中挖掘的基因设计了密码子优化的生物合成途径。这些途径以 3 千碱基为单位从头合成,组装后并基因组整合到中国仓鼠卵巢(CHO)细胞系中。一个合成途径产生了足以维持细胞活力和增殖的缬氨酸。C 追踪验证了缬氨酸的从头生物合成,并进一步揭示了途径中间产物 2,3-二羟基-3-异戊酸的积累。增加下游 的剂量提高了途径的性能,并允许在没有缬氨酸的培养基中以每倍增 3.2 天的速度长期繁殖第二代细胞。这项工作表明,哺乳动物代谢可以接受古老核心途径的恢复,为后生动物谱系的基因组规模努力合成恢复代谢功能铺平了道路。