Suppr超能文献

iDHS-FFLG:通过特征融合与局部-全局特征提取网络识别DNase I超敏感位点

iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network.

作者信息

Wang Lei-Shan, Sun Zhan-Li

机构信息

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China.

School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China.

出版信息

Interdiscip Sci. 2023 Jun;15(2):155-170. doi: 10.1007/s12539-022-00538-8. Epub 2022 Sep 27.

Abstract

The DNase I hypersensitive sites (DHSs) are active regions on chromatin that have been found to be highly sensitive to DNase I. These regions contain various cis-regulatory elements, including promoters, enhancers and silencers. Accurate identification of DHSs helps researchers better understand the transcriptional machinery of DNA and deepen the knowledge of functional DNA elements in non-coding sequences. Researchers have developed many methods based on traditional experiments and machine learning to identify DHSs. However, low prediction accuracy and robustness limit their application in genetics research. In this paper, a novel computational approach based on deep learning is proposed by feature fusion and local-global feature extraction network to identify DHSs in mouse, named iDHS-FFLG. First of all, multiple binary features of nucleotides are fused to better express sequence information. Then, a network consisting of the convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM) and self-attention mechanism is designed to extract local features and global contextual associations. In the end, the prediction module is applied to distinguish between DHSs and non-DHSs. The results of several experiments demonstrate the superior performances of iDHS-FFLG compared to the latest methods.

摘要

脱氧核糖核酸酶I超敏感位点(DHSs)是染色质上的活性区域,已发现其对脱氧核糖核酸酶I高度敏感。这些区域包含各种顺式调控元件,包括启动子、增强子和沉默子。准确识别DHSs有助于研究人员更好地理解DNA的转录机制,并加深对非编码序列中功能性DNA元件的认识。研究人员已经基于传统实验和机器学习开发了许多方法来识别DHSs。然而,低预测准确性和鲁棒性限制了它们在遗传学研究中的应用。本文提出了一种基于深度学习的新计算方法,通过特征融合和局部-全局特征提取网络来识别小鼠中的DHSs,名为iDHS-FFLG。首先,融合核苷酸的多个二元特征以更好地表达序列信息。然后,设计一个由卷积神经网络(CNN)、双向长短期记忆(BiLSTM)和自注意力机制组成的网络来提取局部特征和全局上下文关联。最后,应用预测模块区分DHSs和非DHSs。几个实验的结果证明了iDHS-FFLG与最新方法相比具有卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验