Suppr超能文献

通过双重竞争提高肽段水平的质谱分析。

Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.

机构信息

Chemical and Biological Signatures, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States.

School of Mathematics & Statistics, University of Sydney, New South Wales, 2006, Australia.

出版信息

J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.

Abstract

The analysis of shotgun proteomics data often involves generating lists of inferred peptide-spectrum matches (PSMs) and/or of peptides. The canonical approach for generating these discovery lists is by controlling the false discovery rate (FDR), most commonly through target-decoy competition (TDC). At the PSM level, TDC is implemented by competing each spectrum's best-scoring target (real) peptide match with its best match against a decoy database. This PSM-level procedure can be adapted to the peptide level by selecting the top-scoring PSM per peptide prior to FDR estimation. Here, we first highlight and empirically augment a little known previous work by He et al., which showed that TDC-based PSM-level FDR estimates can be liberally biased. We thus propose that researchers instead focus on peptide-level analysis. We then investigate three ways to carry out peptide-level TDC and show that the most common method ("PSM-only") offers the lowest statistical power in practice. An alternative approach that carries out a double competition, first at the PSM and then at the peptide level ("PSM-and-peptide"), is the most powerful method, yielding an average increase of 17% more discovered peptides at 1% FDR threshold relative to the PSM-only method.

摘要

蛋白质组学数据的分析通常涉及生成推断的肽-谱匹配(PSM)和/或肽列表。生成这些发现列表的典型方法是通过控制假发现率(FDR),最常用的方法是通过目标诱饵竞争(TDC)。在 PSM 水平上,通过将每个光谱的最佳得分目标(真实)肽匹配与其对诱饵数据库的最佳匹配进行竞争来实现 TDC。通过在 FDR 估计之前选择每个肽的得分最高的 PSM,可以将这种 PSM 水平的程序适应于肽水平。在这里,我们首先突出并经验性地扩展了 He 等人之前鲜为人知的一项工作,该工作表明基于 TDC 的 PSM 水平 FDR 估计可能存在很大偏差。因此,我们建议研究人员转而专注于肽水平分析。然后,我们研究了三种执行肽水平 TDC 的方法,并表明最常见的方法(“仅 PSM”)在实践中提供的统计能力最低。一种替代方法是首先在 PSM 级别然后在肽级别执行双重竞争(“PSM-and-peptide”),这是最强大的方法,与仅 PSM 方法相比,在 1% FDR 阈值下平均增加了 17%更多的发现肽。

相似文献

1
Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.通过双重竞争提高肽段水平的质谱分析。
J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.
3
Two-dimensional target decoy strategy for shotgun proteomics. shotgun 蛋白质组学的二维靶标诱饵策略。
J Proteome Res. 2011 Dec 2;10(12):5296-301. doi: 10.1021/pr200780j. Epub 2011 Nov 7.
4
7
Target-decoy false discovery rate estimation using Crema.使用 Crema 进行靶向诱饵假发现率估计。
Proteomics. 2024 Apr;24(8):e2300084. doi: 10.1002/pmic.202300084. Epub 2024 Feb 21.

引用本文的文献

4
Detection and Quantification of Drug-Protein Adducts in Human Liver.检测和定量人肝中药物-蛋白加合物。
J Proteome Res. 2024 Nov 1;23(11):5143-5152. doi: 10.1021/acs.jproteome.4c00663. Epub 2024 Oct 23.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验