Suppr超能文献

通过双重竞争提高肽段水平的质谱分析。

Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.

机构信息

Chemical and Biological Signatures, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States.

School of Mathematics & Statistics, University of Sydney, New South Wales, 2006, Australia.

出版信息

J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.

Abstract

The analysis of shotgun proteomics data often involves generating lists of inferred peptide-spectrum matches (PSMs) and/or of peptides. The canonical approach for generating these discovery lists is by controlling the false discovery rate (FDR), most commonly through target-decoy competition (TDC). At the PSM level, TDC is implemented by competing each spectrum's best-scoring target (real) peptide match with its best match against a decoy database. This PSM-level procedure can be adapted to the peptide level by selecting the top-scoring PSM per peptide prior to FDR estimation. Here, we first highlight and empirically augment a little known previous work by He et al., which showed that TDC-based PSM-level FDR estimates can be liberally biased. We thus propose that researchers instead focus on peptide-level analysis. We then investigate three ways to carry out peptide-level TDC and show that the most common method ("PSM-only") offers the lowest statistical power in practice. An alternative approach that carries out a double competition, first at the PSM and then at the peptide level ("PSM-and-peptide"), is the most powerful method, yielding an average increase of 17% more discovered peptides at 1% FDR threshold relative to the PSM-only method.

摘要

蛋白质组学数据的分析通常涉及生成推断的肽-谱匹配(PSM)和/或肽列表。生成这些发现列表的典型方法是通过控制假发现率(FDR),最常用的方法是通过目标诱饵竞争(TDC)。在 PSM 水平上,通过将每个光谱的最佳得分目标(真实)肽匹配与其对诱饵数据库的最佳匹配进行竞争来实现 TDC。通过在 FDR 估计之前选择每个肽的得分最高的 PSM,可以将这种 PSM 水平的程序适应于肽水平。在这里,我们首先突出并经验性地扩展了 He 等人之前鲜为人知的一项工作,该工作表明基于 TDC 的 PSM 水平 FDR 估计可能存在很大偏差。因此,我们建议研究人员转而专注于肽水平分析。然后,我们研究了三种执行肽水平 TDC 的方法,并表明最常见的方法(“仅 PSM”)在实践中提供的统计能力最低。一种替代方法是首先在 PSM 级别然后在肽级别执行双重竞争(“PSM-and-peptide”),这是最强大的方法,与仅 PSM 方法相比,在 1% FDR 阈值下平均增加了 17%更多的发现肽。

相似文献

1
Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.
J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.
2
Challenging Targets or Describing Mismatches? A Comment on Common Decoy Distribution by Madej et al.
J Proteome Res. 2022 Dec 2;21(12):2840-2845. doi: 10.1021/acs.jproteome.2c00279. Epub 2022 Oct 28.
3
Two-dimensional target decoy strategy for shotgun proteomics.
J Proteome Res. 2011 Dec 2;10(12):5296-301. doi: 10.1021/pr200780j. Epub 2011 Nov 7.
4
Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics.
J Proteome Res. 2015 Aug 7;14(8):3148-61. doi: 10.1021/acs.jproteome.5b00081. Epub 2015 Jul 27.
5
False discovery rate estimation using candidate peptides for each spectrum.
BMC Bioinformatics. 2022 Nov 1;23(1):454. doi: 10.1186/s12859-022-05002-4.
6
Common Decoy Distributions Simplify False Discovery Rate Estimation in Shotgun Proteomics.
J Proteome Res. 2022 Feb 4;21(2):339-348. doi: 10.1021/acs.jproteome.1c00600. Epub 2022 Jan 6.
7
Target-decoy false discovery rate estimation using Crema.
Proteomics. 2024 Apr;24(8):e2300084. doi: 10.1002/pmic.202300084. Epub 2024 Feb 21.
8
Modeling Lower-Order Statistics to Enable Decoy-Free FDR Estimation in Proteomics.
J Proteome Res. 2023 Apr 7;22(4):1159-1171. doi: 10.1021/acs.jproteome.2c00604. Epub 2023 Mar 24.
10
Challenges in Peptide-Spectrum Matching: A Robust and Reproducible Statistical Framework for Removing Low-Accuracy, High-Scoring Hits.
J Proteome Res. 2020 Jan 3;19(1):161-173. doi: 10.1021/acs.jproteome.9b00478. Epub 2019 Dec 20.

引用本文的文献

2
Query Mix-Max Method for FDR Estimation Supported by Entrapment Queries.
J Proteome Res. 2025 Mar 7;24(3):1135-1147. doi: 10.1021/acs.jproteome.4c00744. Epub 2025 Feb 5.
3
PyViscount: Validating False Discovery Rate Estimation Methods via Random Search Space Partition.
J Proteome Res. 2025 Mar 7;24(3):1118-1134. doi: 10.1021/acs.jproteome.4c00743. Epub 2025 Feb 5.
4
Detection and Quantification of Drug-Protein Adducts in Human Liver.
J Proteome Res. 2024 Nov 1;23(11):5143-5152. doi: 10.1021/acs.jproteome.4c00663. Epub 2024 Oct 23.
5
A learned score function improves the power of mass spectrometry database search.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i410-i417. doi: 10.1093/bioinformatics/btae218.
6
Assessment of false discovery rate control in tandem mass spectrometry analysis using entrapment.
bioRxiv. 2025 Jan 21:2024.06.01.596967. doi: 10.1101/2024.06.01.596967.
7
Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.
Mol Cell Proteomics. 2024 Aug;23(8):100800. doi: 10.1016/j.mcpro.2024.100800. Epub 2024 Jun 15.

本文引用的文献

1
Group-walk: a rigorous approach to group-wise false discovery rate analysis by target-decoy competition.
Bioinformatics. 2022 Sep 16;38(Suppl_2):ii82-ii88. doi: 10.1093/bioinformatics/btac471.
2
Common Decoy Distributions Simplify False Discovery Rate Estimation in Shotgun Proteomics.
J Proteome Res. 2022 Feb 4;21(2):339-348. doi: 10.1021/acs.jproteome.1c00600. Epub 2022 Jan 6.
3
ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis.
Sci Data. 2021 Dec 3;8(1):311. doi: 10.1038/s41597-021-01095-3.
4
Accurately Assigning Peptides to Spectra When Only a Subset of Peptides Are Relevant.
J Proteome Res. 2021 Aug 6;20(8):4153-4164. doi: 10.1021/acs.jproteome.1c00483. Epub 2021 Jul 8.
5
New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics.
Bioinformatics. 2020 Dec 30;36(Suppl_2):i745-i753. doi: 10.1093/bioinformatics/btaa807.
6
Beyond Target-Decoy Competition: Stable Validation of Peptide and Protein Identifications in Mass Spectrometry-Based Discovery Proteomics.
Anal Chem. 2020 Nov 17;92(22):14898-14906. doi: 10.1021/acs.analchem.0c00328. Epub 2020 Oct 27.
7
Tailor: A Nonparametric and Rapid Score Calibration Method for Database Search-Based Peptide Identification in Shotgun Proteomics.
J Proteome Res. 2020 Apr 3;19(4):1481-1490. doi: 10.1021/acs.jproteome.9b00736. Epub 2020 Mar 25.
10
Bias in False Discovery Rate Estimation in Mass-Spectrometry-Based Peptide Identification.
J Proteome Res. 2019 May 3;18(5):2354-2358. doi: 10.1021/acs.jproteome.8b00991. Epub 2019 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验