Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America.
Department of Computer and Information Sciences, University of St. Thomas, Saint Paul, Minnesota, United States of America.
PLoS One. 2022 Sep 27;17(9):e0270615. doi: 10.1371/journal.pone.0270615. eCollection 2022.
Given recent and abrupt declines in the abundance of moose (Alces alces) throughout parts of Minnesota and elsewhere in North America, accurately estimating statewide population trends and demographic parameters is a high priority for their continued management and conservation. Statistical population reconstruction using integrated population models provides a flexible framework for combining information from multiple studies to produce robust estimates of population abundance, recruitment, and survival. We used this framework to combine aerial survey data and survival data from telemetry studies to recreate trends and demographics of moose in northeastern Minnesota, USA, from 2005 to 2020. Statistical population reconstruction confirmed the sharp decline in abundance from an estimated 7,841 (90% CI = 6,702-8,933) in 2009 to 3,386 (90% CI = 2,681-4,243) animals in 2013, but also indicated that abundance has remained relatively stable since then, except for a slight decline to 3,163 (90% CI = 2,403-3,718) in 2020. Subsequent stochastic projection of the population from 2021 to 2030 suggests that this modest decline will continue for the next 10 years. Both annual adult survival and per-capita recruitment (number of calves that survived to 1 year per adult female alive during the previous year) decreased substantially in years 2005 and 2019, from 0.902 (SE = 0.043) to 0.689 (SE = 0.061) and from 0.386 (SE = 0.030) to 0.303 (SE = 0.051), respectively. Sensitivity analysis revealed that moose abundance was more sensitive to fluctuations in adult survival than recruitment; thus, we conclude that the steep decline in 2013 was driven primarily by decreasing adult survival. Our analysis demonstrates the potential utility of using statistical population reconstruction to monitor moose population trends and to identify population declines more quickly. Future studies should focus on providing better estimates of per-capita recruitment, using pregnancy rates and calf survival, which can then be incorporated into reconstruction models to help improve estimates of population change through time.
鉴于最近在明尼苏达州和北美的其他地区,驼鹿(Alces alces)的数量急剧减少,准确估计全州的种群趋势和人口统计参数是其持续管理和保护的首要任务。使用综合种群模型进行的种群统计重建为结合来自多个研究的信息提供了一个灵活的框架,以产生对种群丰富度、补充和生存的稳健估计。我们使用该框架结合航空调查数据和来自遥测研究的生存数据,重建了 2005 年至 2020 年美国明尼苏达州东北部驼鹿的趋势和人口统计数据。种群统计重建证实了从 2009 年估计的 7841 只(90%置信区间=6702-8933)到 2013 年的 3386 只(90%置信区间=2681-4243)的丰富度急剧下降,但也表明自那时以来,丰富度一直相对稳定,除了 2020 年略有下降至 3163 只(90%置信区间=2403-3718)。从 2021 年到 2030 年对该种群的随机预测表明,在接下来的 10 年内,这种适度的下降将继续。2005 年和 2019 年,成年个体的年存活率和个体补充率(前一年每只存活的成年雌性所产存活至 1 岁的幼崽数量)均大幅下降,分别从 0.902(SE=0.043)降至 0.689(SE=0.061)和从 0.386(SE=0.030)降至 0.303(SE=0.051)。敏感性分析表明,驼鹿的数量对成年个体存活率的波动比补充率更为敏感;因此,我们得出结论,2013 年的急剧下降主要是由于成年个体存活率的下降。我们的分析表明,使用种群统计重建来监测驼鹿种群趋势并更快地发现种群下降具有潜在的效用。未来的研究应侧重于提供更好的个体补充率估计,使用妊娠率和幼崽存活率,然后将其纳入重建模型,以帮助改善随时间变化的种群变化估计。