Patil Ameya, Richer Gaelle, Jermaine Christopher, Moritz Dominik, Fekete Jean-Daniel
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):407-417. doi: 10.1109/TVCG.2022.3209426. Epub 2022 Dec 16.
We conduct a user study to quantify and compare user performance for a value comparison task using four bar chart designs, where the bars show the mean values of data loaded progressively and updated every second (progressive bar charts). Progressive visualization divides different stages of the visualization pipeline-data loading, processing, and visualization-into iterative animated steps to limit the latency when loading large amounts of data. An animated visualization appearing quickly, unfolding, and getting more accurate with time, enables users to make early decisions. However, intermediate mean estimates are computed only on partial data and may not have time to converge to the true means, potentially misleading users and resulting in incorrect decisions. To address this issue, we propose two new designs visualizing the history of values in progressive bar charts, in addition to the use of confidence intervals. We comparatively study four progressive bar chart designs: with/without confidence intervals, and using near-history representation with/without confidence intervals, on three realistic data distributions. We evaluate user performance based on the percentage of correct answers (accuracy), response time, and user confidence. Our results show that, overall, users can make early and accurate decisions with 92% accuracy using only 18% of the data, regardless of the design. We find that our proposed bar chart design with only near-history is comparable to bar charts with only confidence intervals in performance, and the qualitative feedback we received indicates a preference for designs with history.
我们进行了一项用户研究,以量化和比较用户在使用四种条形图设计进行值比较任务时的表现,其中条形图展示了每秒逐步加载并更新的数据的平均值(渐进式条形图)。渐进式可视化将可视化管道的不同阶段——数据加载、处理和可视化——划分为迭代的动画步骤,以限制在加载大量数据时的延迟。快速出现、展开并随着时间变得更精确的动画可视化,能让用户尽早做出决策。然而,中间的均值估计仅基于部分数据计算,可能没有时间收敛到真实均值,这可能会误导用户并导致错误决策。为了解决这个问题,除了使用置信区间之外,我们还提出了两种在渐进式条形图中可视化值历史的新设计。我们在三种实际数据分布上,对四种渐进式条形图设计进行了比较研究:有/无置信区间,以及使用/不使用置信区间的近历史表示。我们根据正确答案的百分比(准确率)、响应时间和用户信心来评估用户表现。我们的结果表明,总体而言,无论采用何种设计,用户仅使用18%的数据就能以92%的准确率尽早做出准确决策。我们发现,我们提出的仅带有近历史的条形图设计在性能上与仅带有置信区间的条形图相当,并且我们收到的定性反馈表明用户更喜欢带有历史的设计。