Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA.
Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA.
BMC Med Inform Decis Mak. 2022 Sep 27;22(Suppl 3):255. doi: 10.1186/s12911-022-01996-2.
Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports.
In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including 'gold-standard' setting-where gold-standard concepts were used-and end-to-end setting.
For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores.
This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it's necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better.
糖尿病视网膜病变(DR)是美国成年人致盲的主要原因。如果及早发现,DR 可以得到治疗,以防止进一步损害导致失明。人们越来越有兴趣开发人工智能(AI)技术,以帮助使用电子健康记录来检测 DR。眼底图像报告中记录的病变相关信息是一种有价值的资源,可帮助临床决策支持系统诊断 DR。然而,大多数基于 AI 的 DR 诊断研究主要基于医学图像;很少有研究探索自由文本图像报告中捕获的病变相关信息。
在这项研究中,我们检查了两个基于转换器的最先进的自然语言处理(NLP)模型,包括 BERT 和 RoBERTa,将它们与使用长短期记忆(LSTM)实现的循环神经网络进行了比较,以从临床叙述中提取 DR 相关概念。我们确定了四个不同类别的 DR 相关临床概念,包括病变、眼部部位、侧别和严重程度,制定了注释指南,对 536 份图像报告的 DR 语料库进行了注释,并为临床概念提取和关系提取开发了基于转换器的 NLP 模型。我们还检查了两种设置下的关系提取,包括“黄金标准”设置-使用黄金标准概念和端到端设置。
对于概念提取,使用 MIMIC III 数据集预训练的 BERT 模型表现最佳(严格/宽松评估的 0.9503 和 0.9645)。对于关系提取,使用一般英语文本预训练的 BERT 模型实现了最佳的严格/宽松 F1 分数 0.9316。端到端系统 BERT_general_e2e 分别实现了最佳的严格/宽松 F1 分数 0.8578 和 0.8881。基于 RoBERTa 架构的另一个端到端系统 RoBERTa_general_e2e,在严格评分中也取得了与 BERT_general_e2e 相同的性能。
本研究证明了基于转换器的 NLP 模型在临床概念提取和关系提取方面的效率。我们的结果表明,有必要使用临床文本预训练转换器模型,以优化临床概念提取的性能。然而,对于关系提取,使用一般英语文本预训练的转换器表现更好。