Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden.
Norwegian Institute for Nature Research (NINA), Trondheim, Norway.
Mol Ecol. 2022 Dec;31(24):6422-6439. doi: 10.1111/mec.16710. Epub 2022 Oct 13.
Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔF , respectively) and assess the effective population size (N -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The N indicator showed values below the threshold (N ≤ 500) in 20 populations with five showing N < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.
遗传多样性是种群适应和长期生存的基础,但在生物多样性监测中很少考虑。一个关键问题是需要有用且简单的遗传多样性指标。我们在 40 多年(1970-2010 年)的时间里,在瑞典中部的 10 个湖泊系统中的 27 个小高山湖泊中监测了栖息在其中的 27 个小高山湖泊中的棕鳟(Salmo trutta)的遗传多样性。我们使用每个时间点的>1200 条鱼,测试了六个新提出的指标;其中三个是为《生物多样性公约》(CBD)的国际广泛使用而设计的,目前在几个国家应用。另外三个是最近由瑞典科学管理部门制定的,用于国家用途,并首次在这里应用。瑞典的指标使用分子遗传数据监测种群内和种群间的遗传多样性(指标ΔH 和 ΔF ),并评估有效种群大小(N 指标)。我们确定了 29 个具有遗传差异的种群,所有种群都能长期保留。在 27 个湖泊中,有 12 个湖泊容纳了一个以上的种群,这表明棕鳟的生物多样性隐藏在隐秘的、同域的种群中,比人们所认识的更为常见。N 指标在 20 个种群中的值低于阈值(N ≤ 500),其中 5 个种群的 N < 100。在几个种群中,遗传多样性显著减少。复合种群结构似乎缓冲了多样性的丧失;将这些指标应用于复合种群表明,除了一个系统外,所有系统的变化率都基本可以接受。CBD 指标与瑞典指标一致,但提供的细节较少。所有这些指标都适合管理者启动遗传生物多样性监测。