Suppr超能文献

昆虫的铁稳态。

Iron Homeostasis in Insects.

机构信息

Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; email:

出版信息

Annu Rev Entomol. 2023 Jan 23;68:51-67. doi: 10.1146/annurev-ento-040622-092836. Epub 2022 Sep 28.

Abstract

Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.

摘要

铁是所有生物体必需的微量元素;然而,铁具有化学性质,可能对细胞有害。由于铁既必需又有潜在的破坏性,昆虫具有体内平衡过程来控制体内铁的氧化还原状态、数量和位置。这些过程包括从饮食中摄取铁、细胞内和细胞外铁运输以及铁储存。早期对昆虫中铁结合蛋白的研究表明,昆虫和哺乳动物具有惊人不同的铁体内平衡机制,包括从细胞中输出铁和从一个细胞向另一个细胞运输铁的不同主要机制,随后的研究继续支持这一观点。本文综述了昆虫铁体内平衡的最新知识,比较了昆虫和哺乳动物的铁体内平衡机制,并提请注意关键的剩余知识空白。

相似文献

1
Iron Homeostasis in Insects.
Annu Rev Entomol. 2023 Jan 23;68:51-67. doi: 10.1146/annurev-ento-040622-092836. Epub 2022 Sep 28.
2
Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis.
Insect Sci. 2021 Apr;28(2):495-508. doi: 10.1111/1744-7917.12783. Epub 2020 Jun 15.
4
Brain iron homeostasis.
Dan Med Bull. 2002 Nov;49(4):279-301.
5
Iron homeostasis in insects: Insights from Drosophila studies.
IUBMB Life. 2013 Oct;65(10):863-72. doi: 10.1002/iub.1211.
7
Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis.
Insect Biochem Mol Biol. 2020 Oct;125:103438. doi: 10.1016/j.ibmb.2020.103438. Epub 2020 Jul 29.
8
Structure/function overview of proteins involved in iron storage and transport.
Curr Med Chem. 2005;12(23):2683-93. doi: 10.2174/092986705774462969.
9
Iron metabolism in insects.
Annu Rev Entomol. 2002;47:535-59. doi: 10.1146/annurev.ento.47.091201.145237.
10
Insect transferrins: multifunctional proteins.
Biochim Biophys Acta. 2012 Mar;1820(3):437-51. doi: 10.1016/j.bbagen.2011.07.011. Epub 2011 Jul 23.

引用本文的文献

1
The flavonoid rutin protects against imidacloprid-induced osmotic and electric disruptions in Africanized honey bees.
PLoS One. 2025 Sep 9;20(9):e0331855. doi: 10.1371/journal.pone.0331855. eCollection 2025.
2
Metabolic reprogramming and gut microbiota ecology drive divergent infection outcomes in .
bioRxiv. 2025 Aug 14:2025.08.13.670040. doi: 10.1101/2025.08.13.670040.
3
Iron acquisition in the mutualistic fungus : implications of mineral elements in insect-fungus symbiosis.
Microbiol Spectr. 2025 Sep 2;13(9):e0105125. doi: 10.1128/spectrum.01051-25. Epub 2025 Aug 7.
4
New molecular components of high and low affinity iron import systems in Drosophila.
Nat Commun. 2025 Jul 1;16(1):5662. doi: 10.1038/s41467-025-60758-6.
5
Molecular basis of the explosive defence response in the bombardier beetle .
R Soc Open Sci. 2025 May 21;12(5):241823. doi: 10.1098/rsos.241823. eCollection 2025 May.
6
Nuclear receptor coactive 4-mediated ferritinophagy: a key role of heavy metals toxicity.
Arch Toxicol. 2025 Apr;99(4):1257-1270. doi: 10.1007/s00204-025-03963-y. Epub 2025 Feb 10.
7
8
In situ detection of ferric reductase activity in the intestinal lumen of an insect.
J Biol Inorg Chem. 2024 Dec;29(7-8):773-784. doi: 10.1007/s00775-024-02080-y. Epub 2024 Dec 1.

本文引用的文献

2
The roles of metals in insect-microbe interactions and immunity.
Curr Opin Insect Sci. 2022 Feb;49:71-77. doi: 10.1016/j.cois.2021.12.004. Epub 2021 Dec 21.
3
Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond.
Cells. 2021 Aug 25;10(9):2198. doi: 10.3390/cells10092198.
4
Identification of PCBP1 as a Novel Modulator of Mammalian Circadian Clock.
Front Genet. 2021 Mar 26;12:656571. doi: 10.3389/fgene.2021.656571. eCollection 2021.
5
Aedes aegypti dyspepsia encodes a novel member of the SLC16 family of transporters and is critical for reproductive fitness.
PLoS Negl Trop Dis. 2021 Apr 7;15(4):e0009334. doi: 10.1371/journal.pntd.0009334. eCollection 2021 Apr.
6
FlyBase: updates to the Drosophila melanogaster knowledge base.
Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907. doi: 10.1093/nar/gkaa1026.
8
Elevating bioavailable iron levels in mitochondria suppresses the defective phenotypes caused by PINK1 loss-of-function in Drosophila melanogaster.
Biochem Biophys Res Commun. 2020 Nov 5;532(2):285-291. doi: 10.1016/j.bbrc.2020.08.002. Epub 2020 Aug 29.
10
A holistic view of mammalian (vertebrate) cellular iron uptake.
Metallomics. 2020 Sep 23;12(9):1323-1334. doi: 10.1039/d0mt00065e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验