Otsuka Kensuke, Seike Taisuke, Toya Yoshihiro, Ishii Jun, Hirono-Hara Yoko, Hara Kiyotaka Y, Matsuda Fumio
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
J Biosci Bioeng. 2022 Dec;134(6):484-490. doi: 10.1016/j.jbiosc.2022.08.006. Epub 2022 Sep 25.
A light-driven ATP regeneration system using rhodopsin has been utilized as a method to improve the production of useful substances by microorganisms. To enable the industrial use of this system, the proton pumping rate of rhodopsin needs to be enhanced. Nonetheless, a method for this enhancement has not been established. In this study, we attempted to develop an evolutionary engineering method to improve the proton-pumping activity of rhodopsins. We first introduced random mutations into delta-rhodopsin (dR) from Haloterrigena turkmenica using error-prone PCR to generate approximately 7000 Escherichia coli strains carrying the mutant dR genes. Rhodopsin-expressing E. coli with enhanced proton pumping activity have significantly increased survival rates in prolonged saline water. Considering this, we enriched the mutant E. coli cells with higher proton pumping rates by selecting populations able to survive starvation under 50 μmol m s at 37 °C. As a result, we successfully identified two strains, in which proton pumping activity was enhanced two-fold by heterologous expression in E. coli in comparison to wild-type strains. The combined approach of survival testing using saline water and evolutionary engineering methods used in this study will contribute greatly to the discovery of a novel rhodopsin with improved proton pumping activity. This will facilitate the utilization of rhodopsin in industrial applications.
一种使用视紫红质的光驱动ATP再生系统已被用作提高微生物有用物质产量的方法。为了使该系统能够用于工业生产,需要提高视紫红质的质子泵浦速率。然而,尚未建立提高质子泵浦速率的方法。在本研究中,我们试图开发一种进化工程方法来提高视紫红质的质子泵浦活性。我们首先使用易错PCR对来自土库曼嗜盐菌的δ-视紫红质(dR)引入随机突变,以产生约7000株携带突变dR基因的大肠杆菌菌株。具有增强质子泵浦活性的表达视紫红质的大肠杆菌在延长的盐水中存活率显著提高。考虑到这一点,我们通过选择能够在37℃、50μmol m s光照下饥饿存活的群体,富集了具有更高质子泵浦速率的突变大肠杆菌细胞。结果,我们成功鉴定出两株菌株,与野生型菌株相比,它们在大肠杆菌中的异源表达使质子泵浦活性提高了两倍。本研究中使用的盐水存活测试和进化工程方法的联合应用将极大地有助于发现具有改进质子泵浦活性的新型视紫红质。这将促进视紫红质在工业应用中的利用。