Suppr超能文献

利用光能在 中实现甲羟戊酸到异戊烯醇的转化,而无需消耗糖来提供 ATP。

Conversion of Mevalonate to Isoprenol Using Light Energy in without Consuming Sugars for ATP Supply.

机构信息

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan.

Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka422-8526, Japan.

出版信息

ACS Synth Biol. 2022 Dec 16;11(12):3966-3972. doi: 10.1021/acssynbio.2c00313. Epub 2022 Nov 28.

Abstract

Bioconversion of key intermediate metabolites such as mevalonate into various useful chemicals is a promising strategy for microbial production. However, the conversion of mevalonate into isoprenoids requires a supply of adenosine triphosphate (ATP). Light-driven ATP regeneration using microbial rhodopsin is an attractive module for improving the intracellular ATP supply. In the present study, we demonstrated the ATP-consuming conversion of mevalonate to isoprenol using rhodopsin-expressing cells as a whole-cell catalyst in a medium that does not contain energy cosubstrate, such as glucose. Heterologous genes for the synthesis of isoprenol from mevalonate, which requires three ATP molecules for the series of reactions, and a delta-rhodopsin gene derived from were cointroduced into . To evaluate the conversion efficiency of mevalonate to isoprenol, the cells were suspended in a synthetic medium containing mevalonate as the sole carbon source and incubated under dark or light illumination (100 μmol m s). The specific isoprenol production rates were 10.0 ± 0.9 and 20.4 ± 0.7 μmol gDCW h for dark and light conditions, respectively. The conversion was successfully enhanced under the light condition. Furthermore, the conversion efficiency increased with increasing illumination intensity, suggesting that ATP regenerated by the proton motive force generated by rhodopsin using light energy can drive ATP-consuming reactions in the whole-cell catalyst.

摘要

将关键中间代谢产物(如甲羟戊酸)转化为各种有用的化学物质是微生物生产的一种很有前途的策略。然而,将甲羟戊酸转化为异戊烯需要提供三磷酸腺苷(ATP)。利用微生物视紫红质进行光驱动 ATP 再生是提高细胞内 ATP 供应的一个有吸引力的模块。在本研究中,我们使用表达视紫红质的细胞作为整个细胞催化剂,在不包含能量辅助底物(如葡萄糖)的培养基中,展示了甲羟戊酸到异戊烯的 ATP 消耗转化。将需要三个 ATP 分子才能完成的甲羟戊酸异戊烯合成的异源基因和来自 的德尔塔视紫红质基因共同引入 。为了评估甲羟戊酸转化为异戊烯的效率,将细胞悬浮在含有甲羟戊酸作为唯一碳源的合成培养基中,并在黑暗或光照下(100 μmol m s)孵育。黑暗和光照条件下的异戊烯特异性生产速率分别为 10.0 ± 0.9 和 20.4 ± 0.7 μmol gDCW h。在光照条件下,转化成功得到了增强。此外,转化率随光照强度的增加而增加,这表明视紫红质利用光能产生的质子动力可以驱动整个细胞催化剂中消耗 ATP 的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验