Suppr超能文献

通过原子层沉积制备的可调谐固体酸催化剂薄膜

Tunable Solid Acid Catalyst Thin Films Prepared by Atomic Layer Deposition.

作者信息

Canlas Christian P, Cheng Lei, O'Neill Brandon, Dogan Fulya, Libera Joseph A, Dumesic James A, Curtiss Larry A, Elam Jeffrey W

机构信息

Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43171-43179. doi: 10.1021/acsami.2c09734. Epub 2022 Sep 15.

Abstract

Solid acid catalysts, including zeolites and amorphous silica-aluminas (ASAs), are industrially important materials widely used in the fuel and petrochemical industries. The versatility of zeolites is due to the Brønsted acidity of the bridging hydroxyl and shape selectivity that can be tailored during and after synthesis. This is in contrast to amorphous silica-alumina, where tailoring acidity is a major challenge as the Brønsted acid structure in ASA is still debated. In both cases, however, the pore size and acidity cannot be tuned independently, and this is particularly limiting in the application of biomass conversion, where zeolite pores are too small for the molecules of interest. Herein, we present a method using atomic layer deposition (ALD) to prepare thin films of solid acid materials where the ratio of Brønsted to Lewis acid sites can be tuned precisely. This capability, combined with the sub-nm pore size control afforded by ALD yields a powerful and flexible method for synthesizing solid acid catalysts inside virtually any mesoporous host. We demonstrate the utility of these materials in two acid-catalyzed reactions relevant to biomass conversion: (1) Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction and dehydration of fructose and (2) cascade reaction of glucose to 5-hydroxymethylfurfural. Finally, we propose a plausible structure for the Brønsted acid sites in our materials based on infrared spectroscopy and solid-state nuclear magnetic resonance measurements and density functional theory calculations and argue that this same structure might apply to conventional ASAs as well.

摘要

固体酸催化剂,包括沸石和无定形硅铝酸盐(ASA),是在燃料和石化工业中广泛使用的重要工业材料。沸石的多功能性源于桥连羟基的布朗斯台德酸性以及在合成过程中和合成后可定制的形状选择性。这与无定形硅铝酸盐形成对比,在无定形硅铝酸盐中,由于ASA中的布朗斯台德酸结构仍存在争议,调节酸度是一项重大挑战。然而,在这两种情况下,孔径和酸度都不能独立调节,这在生物质转化应用中尤其受限,因为沸石孔对于目标分子来说太小。在此,我们提出一种使用原子层沉积(ALD)制备固体酸材料薄膜的方法,其中布朗斯台德酸位点与路易斯酸位点的比例可以精确调节。这种能力与ALD提供的亚纳米孔径控制相结合,产生了一种强大而灵活的方法,用于在几乎任何介孔主体内部合成固体酸催化剂。我们展示了这些材料在与生物质转化相关的两个酸催化反应中的实用性:(1)梅魏因-庞多夫-韦利-奥彭瑙尔(MPVO)反应以及果糖脱水反应,(2)葡萄糖到5-羟甲基糠醛的级联反应。最后,我们基于红外光谱、固态核磁共振测量和密度泛函理论计算,为我们材料中的布朗斯台德酸位点提出了一种合理的结构,并认为这种相同的结构可能也适用于传统的ASA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验