Suppr超能文献

重新发现可靠成分分析:在幼儿期执行功能技能中的应用。

Rediscovering reliable components analysis: An application to executive function skills in early childhood.

作者信息

Willoughby Michael T, Williams Jason, Tueller Stephen J, Lauff Erich M, Hudson Kesha

机构信息

RTI International.

Substance Use, Prevention, Evaluation and Research Program, RTI International.

出版信息

Psychol Assess. 2023 Jan;35(1):32-41. doi: 10.1037/pas0001179. Epub 2022 Sep 29.

Abstract

Executive function (EF) assessments often involve the administration of multiple tasks. Although factor analytic methods are routinely used to summarize performance across multiple tasks, they may not be optimal for this purpose. We introduce reliable component analysis (RCA) as a strategy for summarizing EF task performance and demonstrate how it compares to traditional methods. Participants included 259 children ( = 4.5, = 0.6 years old; 55% female; 41% White, 35% Black, 14% Hispanic, 1% Asian, 1% American Indian, and 8% of more than one race) from the Kids Activity and Learning Study. Data collection occurred in center-based preschools and involved direct child assessments of EF, motor, and math skills. Principal components analysis (PCA), principal axis factor analysis (FA), and RCA methods were used to summarize children's performance across a battery of six EF tasks. Whereas PCA and FA indicated that a single composite or factor provided the best representation of EF task data, RCA indicated that three composites were justifiable. RCA composites were moderately to strongly correlated with PCA and FA scores (s = .39-.79). Regression models indicated that all three approaches for combining EF task scores explained the same proportion of variance in motor and math skills outcomes, though the contributions of individual composite and factor scores varied. Results are discussed with respect to how RCA differs from more commonly used tools for data reduction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

执行功能(EF)评估通常涉及多项任务的实施。尽管因子分析方法经常被用于总结多项任务的表现,但它们可能并非最适合此目的。我们引入可靠成分分析(RCA)作为一种总结EF任务表现的策略,并展示它与传统方法相比如何。参与者包括来自儿童活动与学习研究的259名儿童(平均年龄 = 4.5岁,标准差 = 0.6岁;55%为女性;41%为白人,35%为黑人,14%为西班牙裔,1%为亚裔,1%为美洲印第安人,8%为多种族)。数据收集在基于中心的幼儿园进行,涉及对儿童EF、运动和数学技能的直接评估。主成分分析(PCA)、主轴因子分析(FA)和RCA方法被用于总结儿童在一系列六项EF任务中的表现。虽然PCA和FA表明单一的综合得分或因子能最好地代表EF任务数据,但RCA表明三个综合得分是合理的。RCA综合得分与PCA和FA得分中度到高度相关(相关系数 = 0.39 - 0.79)。回归模型表明,尽管各个综合得分和因子得分的贡献不同,但将EF任务得分组合的所有三种方法在解释运动和数学技能结果的方差比例上是相同的。我们将讨论RCA与更常用的数据简化工具的不同之处。(《心理学文摘数据库记录》(c)2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验