Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
Phys Chem Chem Phys. 2022 Oct 12;24(39):24345-24352. doi: 10.1039/d2cp02798d.
Triplet and singlet exciton diffusion plays a decisive role in triplet-triplet annihilation (TTA) and singlet fission (SF) processes of rubrene (Rub) films at low excitation power, and therefore has an important implication for TTA-mediated photon upconversion (UC). Although triplet diffusion in crystalline Rub was studied before, there is no quantitative data on diffusion in disordered Rub films most widely employed for NIR-to-Vis UC. The lack of these data hinders the progress of TTA-UC applications relying on a Rub annihilator (emitter). Herein, a time-resolved PL bulk-quenching technique was employed to estimate the exciton diffusion coefficient () and diffusion length () in the neat Rub films as well as Rub-doped PS films at 80 wt% doping concentration, previously reported to be optimal in terms of UC efficiency. The impact of commonly utilized singlet energy collector (sink) DBP on exciton diffusion was also assessed, highlighting its importance exclusively on the dynamics of singlets in Rub films. Our study revealed that triplet diffusion lengths (TD) of 25-30 nm estimated for the disordered Rub films are sufficient for encountering triplets from the neighboring sensitizer molecules at a low sensitizer PdPc concentration (0.1 wt%), thereby enabling the desired TTA domination regime to be reached. Essentially, the performance of Rub-based UC systems was found to be limited by the modest maximal TD (up to ∼55 nm) in disordered films resulting from a short maximum triplet lifetime (∼100 μs) inherent to this emitter. Thus, to enhance the NIR-to-Vis TTA-UC performance, new emitters with a longer triplet lifetime in the solid state are required.
三重态和单重态激子扩散在低激发功率下的苝(Rub)薄膜的三重态-三重态湮灭(TTA)和单重态裂变(SF)过程中起着决定性的作用,因此对 TTA 介导的光子上转换(UC)有重要的影响。虽然之前已经研究了晶体 Rub 中的三重态扩散,但对于最广泛用于近红外到可见光 UC 的无序 Rub 薄膜中的扩散,没有定量数据。这些数据的缺乏阻碍了依赖 Rub 猝灭剂(发射器)的 TTA-UC 应用的进展。在此,采用时间分辨 PL 体淬灭技术来估计纯 Rub 薄膜以及先前报道的在 UC 效率方面为最佳的 Rub 掺杂 PS 薄膜中的激子扩散系数(D)和扩散长度(L),在 80wt%的掺杂浓度下。还评估了常用的单重态能量收集器(D)DBP 对激子扩散的影响,突出了其在 Rub 薄膜中单重态动力学方面的重要性。我们的研究表明,为了在低敏化剂 PdPc 浓度(0.1wt%)下遇到来自相邻敏化剂分子的三重态,估计无序 Rub 薄膜中的三重态扩散长度(TD)为 25-30nm 就足够了,从而使期望的 TTA 主导状态得以实现。本质上,发现基于 Rub 的 UC 系统的性能受到无序薄膜中适度最大 TD(最大可达约 55nm)的限制,这是由于该发射器固有的三重态寿命(约 100μs)较短所致。因此,为了提高近红外到可见光 TTA-UC 的性能,需要具有更长三重态寿命的新型固态发射器。