Département de Bactériologie, AP-HP, APHP.Sorbonne Université, Hôpital Saint-Antoine, Paris, France.
INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France.
Sci Rep. 2022 Sep 30;12(1):16445. doi: 10.1038/s41598-022-21010-z.
This study aimed to evaluate the contribution of Machine Learning (ML) approach in the interpretation of intercalating dye-based quantitative PCR (IDqPCR) signals applied to the diagnosis of mucormycosis. The ML-based classification approach was applied to 734 results of IDqPCR categorized as positive (n = 74) or negative (n = 660) for mucormycosis after combining "visual reading" of the amplification and denaturation curves with clinical, radiological and microbiological criteria. Fourteen features were calculated to characterize the curves and injected in several pipelines including four ML-algorithms. An initial subset (n = 345) was used for the conception of classifiers. The classifier predictions were combined with majority voting to estimate performances of 48 meta-classifiers on an external dataset (n = 389). The visual reading returned 57 (7.7%), 568 (77.4%) and 109 (14.8%) positive, negative and doubtful results respectively. The Kappa coefficients of all the meta-classifiers were greater than 0.83 for the classification of IDqPCR results on the external dataset. Among these meta-classifiers, 6 exhibited Kappa coefficients at 1. The proposed ML-based approach allows a rigorous interpretation of IDqPCR curves, making the diagnosis of mucormycosis available for non-specialists in molecular diagnosis. A free online application was developed to classify IDqPCR from the raw data of the thermal cycler output ( http://gepamy-sat.asso.st/ ).
本研究旨在评估机器学习 (ML) 方法在解释基于嵌入染料的定量 PCR (IDqPCR) 信号中的作用,该信号应用于毛霉病的诊断。基于 ML 的分类方法应用于 734 个 IDqPCR 结果,这些结果在结合扩增和变性曲线的“视觉读取”与临床、放射学和微生物学标准后,分为阳性(n=74)或阴性(n=660)。计算了 14 个特征来描述曲线,并将其注入包括 4 个 ML 算法在内的多个管道中。初始子集(n=345)用于构建分类器。使用多数投票法将分类器的预测结果组合起来,以估计 48 个元分类器在外部数据集(n=389)上的性能。视觉读取分别返回 57(7.7%)、568(77.4%)和 109(14.8%)个阳性、阴性和可疑结果。所有元分类器在外部数据集上对 IDqPCR 结果的分类的 Kappa 系数均大于 0.83。在这些元分类器中,有 6 个的 Kappa 系数为 1。基于 ML 的方法可用于严格解释 IDqPCR 曲线,使非分子诊断专家也能够进行毛霉病诊断。已开发出一个免费的在线应用程序,可从热循环仪输出的原始数据中对 IDqPCR 进行分类(http://gepamy-sat.asso.st/)。