Suppr超能文献

用于冠状动脉疾病诊断和预测的具有简化特征子集的异构分类器集成

Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.

作者信息

Velusamy Durgadevi, Ramasamy Karthikeyan

机构信息

Department of Computer Science and Engineering, M.Kumarasamy College of Engineering, Karur, Tamilnadu, 639 113, India.

Department of Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur, Tamilnadu, 639 113, India.

出版信息

Comput Methods Programs Biomed. 2021 Jan;198:105770. doi: 10.1016/j.cmpb.2020.105770. Epub 2020 Sep 30.

Abstract

BACKGROUND AND OBJECTIVE

Coronary artery disease (CAD) is considered one of the most prominent health issues causing high mortality in the world population. Hence, earlier diagnosis and prediction of CAD is essential for the proper medication of patients. The objective of this study is to develop a machine learning algorithm that will help in accurate diagnosis of CAD.

METHODS

In this paper, we have proposed a novel heterogeneous ensemble method combining three base classifiers viz., K-Nearest Neighbour, Random Forest, and Support Vector Machine for effective diagnosis of CAD. The results of base classifiers are combined using ensemble voting technique based on average-voting (AVEn), majority-voting (MVEn), and weighted-average voting (WAVEn) for prediction of CAD. The random forest-based Boruta wrapper feature selection algorithm and feature importance of SVM are used for relevant feature selection based on attribute importance and rank.

RESULTS

The proposed ensemble algorithm is developed using 5 features selected based on the feature importance and the performance of the algorithm is evaluated using the Z-Alizadeh Sani dataset. Further, the dataset is balanced using Synthetic Minority Over-sampling Technique and its performance is evaluated. The result analysis shows that the WAVEn algorithm achieves better classification accuracy, sensitivity, specificity and precision of 98.97%, 100%, 96.3% and 98.3% respectively for the original dataset. The WAVEn algorithm applied on the balanced dataset achieves 100% accuracy, sensitivity, specificity and precision in diagnosing CAD. To the best of author's knowledge, the accuracy achieved by WAVEn is the highest accuracy when compared with the state-of-the-art algorithms in the literature for both original and balanced dataset.

CONCLUSIONS

The statistical results prove the robustness of the WAVEn algorithm in reliably discriminating the CAD patients from healthy ones with high precision, and therefore it can be used for developing a decision support system for diagnosing CAD at an early stage.

摘要

背景与目的

冠状动脉疾病(CAD)被认为是导致全球人口高死亡率的最突出健康问题之一。因此,CAD的早期诊断和预测对于患者的合理用药至关重要。本研究的目的是开发一种有助于准确诊断CAD的机器学习算法。

方法

在本文中,我们提出了一种新颖的异构集成方法,该方法结合了三种基本分类器,即K近邻、随机森林和支持向量机,用于CAD的有效诊断。基于平均投票(AVEn)、多数投票(MVEn)和加权平均投票(WAVEn)的集成投票技术将基本分类器的结果进行组合,以预测CAD。基于随机森林的Boruta包装器特征选择算法和支持向量机的特征重要性用于基于属性重要性和排名的相关特征选择。

结果

所提出的集成算法是使用基于特征重要性选择的5个特征开发的,并使用Z - Alizadeh Sani数据集评估算法的性能。此外,使用合成少数过采样技术对数据集进行平衡,并评估其性能。结果分析表明,对于原始数据集,WAVEn算法分别实现了98.97%、100%、96.3%和98.3%的更好分类准确率、灵敏度、特异性和精确率。应用于平衡数据集的WAVEn算法在诊断CAD时实现了100%的准确率、灵敏度、特异性和精确率。据作者所知,与文献中针对原始数据集和平衡数据集的现有算法相比,WAVEn算法所达到的准确率是最高的。

结论

统计结果证明了WAVEn算法在高精度地可靠区分CAD患者和健康个体方面的稳健性,因此它可用于开发早期诊断CAD的决策支持系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验