Suppr超能文献

深度学习单模光纤成像中的空间变分去模糊和图像增强。

Spatially variant deblur and image enhancement in a single multimode fiber imaged by deep learning.

出版信息

Opt Lett. 2022 Oct 1;47(19):5040-5043. doi: 10.1364/OL.469034.

Abstract

A single multimode fiber has been applied in minimally invasive endoscopy with wavefront shaping for biological research such as brain imaging. Most of the fibers, such as step-index and graded-index multimode fibers, give rise to spatially variant blur due to limits on the numerical aperture and collection efficiency. Routines to solve this problem are based on iterative algorithms, which are often slow and computer-intense. We developed a method to synthesize datasets for driving a deep learning network to deblur and denoise the spatially variant degraded image. This approach is fast (5 ms), up to three orders of magnitude faster than the iterative way. Furthermore, our method can be applied to different types of fiber endoscopy, and two types of fiber are tested here. The performance is verified on fluorescence beads and three kinds of biological tissue sections in the experiment, demonstrating effectiveness in image enhancement.

摘要

单模光纤已应用于具有波前整形的微创内窥镜中,用于脑成像等生物研究。大多数光纤,如阶跃指数和梯度指数多模光纤,由于数值孔径和收集效率的限制,会导致空间变模糊。解决此问题的例程基于迭代算法,这些算法通常速度较慢且计算机密集度高。我们开发了一种方法来合成数据集,以驱动深度学习网络对空间变退化图像进行去模糊和去噪。该方法速度很快(5 毫秒),比迭代方法快三个数量级。此外,我们的方法可以应用于不同类型的光纤内窥镜,这里测试了两种类型的光纤。实验中通过荧光珠和三种生物组织切片验证了性能,证明了该方法在图像增强方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验