Turcotte Raphaël, Sutu Eusebiu, Schmidt Carla C, Emptage Nigel J, Booth Martin J
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
Biomed Opt Express. 2020 Jul 29;11(8):4759-4771. doi: 10.1364/BOE.399983. eCollection 2020 Aug 1.
Focusing light through a step-index multimode optical fiber (MMF) using wavefront control enables minimally-invasive endoscopy of biological tissue. The point spread function (PSF) of such an imaging system is spatially variant, and this variation limits compensation for blurring using most deconvolution algorithms as they require a uniform PSF. However, modeling the spatially variant PSF into a series of spatially invariant PSFs re-opens the possibility of deconvolution. To achieve this we developed svmPSF: an open-source Java-based framework compatible with ImageJ. The approach takes a series of point response measurements across the field-of-view (FOV) and applies principal component analysis to the measurements' co-variance matrix to generate a PSF model. By combining the svmPSF output with a modified Richardson-Lucy deconvolution algorithm, we were able to deblur and regularize fluorescence images of beads and live neurons acquired with a MMF, and thus effectively increasing the FOV.
利用波前控制使光通过阶跃折射率多模光纤(MMF)聚焦,能够实现对生物组织的微创内窥镜检查。这种成像系统的点扩散函数(PSF)在空间上是变化的,这种变化限制了使用大多数反卷积算法对模糊进行补偿,因为它们需要均匀的PSF。然而,将空间变化的PSF建模为一系列空间不变的PSF重新开启了反卷积的可能性。为了实现这一点,我们开发了svmPSF:一个与ImageJ兼容的基于Java的开源框架。该方法在整个视场(FOV)上进行一系列点响应测量,并对测量的协方差矩阵应用主成分分析以生成PSF模型。通过将svmPSF输出与改进的Richardson-Lucy反卷积算法相结合,我们能够对用MMF获取的珠子和活神经元的荧光图像进行去模糊和正则化处理,从而有效扩大视场。